1.Chang, H., Shi, L. N., Chen, Y. H., Wang, P. F., & Yi, T. F. (2022). Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coordination Chemistry Reviews. 473, 214839.
2.Kumar, Y., Mooste, M., & Tammeveski, K. (2023). Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc–air battery application. Current Opinion in Electrochemistry. 38, 101229.
3.Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., & Zhang, H. (2020). Lithium-ion batteries–Current state of the art and anticipated developments. J. of Power Sources, 479, 228708.
4.Yang, D., Tan, H., Rui, X., & Yu, Y. (2019). Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochemical Energy Reviews. 2, 395-427.
5.Hu, S., & Zhu, M. (2023). Semiconductor for oxygen electrocatalysis in photo-assisted rechargeable zinc air batteries: Principles, Advances, and Opportunities. Energy Storage Materials. 102866.
6.Deng, X., Jiang, Z., Chen, Y., Dang, D., Liu, Q., Wang, X., & Yang, X. (2023). Renewable wood-derived hierarchical porous, N-doped carbon sheet as a robust self-supporting cathodic electrode for zinc-air batteries. Chinese Chemical Letters. 34 (1), 107389.
7.Liu, H., Guan, J., Yang, S., Yu, Y., Shao, R., Zhang, Z., ... & Xu, Q. (2020). Metal–organic‐framework‐derived Co2P nanoparticle/ multi‐doped porous carbon as a trifunctional electrocatalyst. Advanced Materials, 32 (36), 2003649.
8.Zhao, Z., Fan, X., Ding, J., Hu, W., Zhong, C., & Lu, J. (2019). Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization. ACS Energy Letters. 4 (9), 2259-2270.
9.Gu, P., Zheng, M., Zhao, Q., Xiao, X., Xue, H., & Pang, H. (2017). Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A. 5 (17), 7651-7666.
10.Schmitt, T., Arlt, T., Manke, I., Latz, A., & Horstmann, B. (2019). Zinc electrode shape-change in secondary air batteries: A 2D modeling approach. J. of Power Sources. 432, 119-132.
11.Sun, Q., Dai, L., Luo, T., Wang, L., Liang, F., & Liu, S. (2023). Recent advances in solid‐state metal–air batteries. Carbon Energy. 5 (2), e276.
12.Zhou, Q., Zhang, Z., Cai, J., Liu, B., Zhang, Y., Gong, X., ... & Chen, Z. (2020). Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 71, 104592.
13.Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., & Ma, S. (2013). Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, 113, 481-489.
14.Wang, Z., Zhou, X., Jin, H., Chen, D., Zhu, J., Hempelmann, R., ... & Mu, S. (2022). Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries. J. of Alloys and Compounds. 908, 164565.
15.Wang, X., Liao, Z., Fu, Y., Neumann, C., Turchanin, A., Nam, G., ... & Feng, X. (2020). Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials. 26, 157-164.
16.Chen, C., & Hu, L. (2018). Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Accounts of chemical research. 51 (12), 3154-3165.
17.Teng, S., Siegel, G., Wang, W., & Tiwari, A. (2014). Carbonized wood for supercapacitor electrodes. ECS Solid State Letters. 3 (5), M25.
18.Cuna, A., Tancredi, N., Bussi, J., Barranco, V., Centeno, T. A., Quevedo, A., & Rojo, J. M. (2014). Biocarbon monoliths as supercapacitor electrodes: influence of wood anisotropy on their electrical and electrochemical properties. J. of the Electrochemical Society. 161 (12), A1806.
19.Moreno-Castilla, C., Pérez-Cadenas, A. F., Maldonado-Hodar, F. J., Carrasco-Marı́n, F., & Fierro, J. L. G. (2003). Influence of carbon–oxygen surface complexes on the surface acidity of tungsten oxide catalysts supported on activated carbons. Carbon. 41 (6), 1157-1167.
20.Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., ... & Hu, L. (2018). Wood‐based nanotechnologies toward sustainability. Advanced Materials. 30 (1), 1703453.
21.Wu, F. C., Tseng, R. L., Hu, C. C., & Wang, C. C. (2004). Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J. of Power Sources, 138 (1-2), 351-359.
22.Eom, S. W., Lee, C. W., Yun, M. S., & Sun, Y. K. (2006). The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochimica acta. 52 (4), 1592-1595.
23.Figueiredo, F. (2013). On the prediction of popularity of trends and hits for user generated videos. In Proceedings of
the sixth ACM international conference on Web search and data mining. Pp: 741-746.
24.Marsh, H., Martı́nez-Escandell, M., & Rodrı́guez-Reinoso, F. (1999). Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon. 37 (3), 363-390.
25.Burchell, T. D., Contescu, C. I., & Gallego, N. C. (2017). Activated carbon fibers for gas storage. In Activated Carbon Fiber and Textiles. Woodhead Publishing. Pp: 305-335.
26.Sevilla, M., & Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science. 7 (4), 1250-1280.
27.Maruyama, J., & Abe, I. (2005). Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum. J. of Power Sources. 148, 1-8.
28.Gärtner, H., & Schweingruber, F. H. (2013). Microscopic preparation techniques for plant stem analysis (No Title).
29.Chang, H., Shi, L. N., Chen, Y. H., Wang, P. F., & Yi, T. F. (2022). Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coordination Chemistry Reviews. 473, 214839.
30.Horne, P. A., & Williams, P. T. (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 75 (9), 1051-1059.
31.Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B. J. O. J. F. J. J. E. G., ... & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil science society of America J.70 (5), 1719-1730.
32.Wang, T., Camps-Arbestain, M., Hedley, M., & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil. 357, 173-187.
33.Wu, C., Zhang, S., Wu, W., Xi, Z., Zhou, C., Wang, X., ... & Chen, D. (2019). Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon. 150, 311-318.
34.Yaqoob, A. A., Ibrahim, M. N. M., & Umar, K. (2021). Electrode material as anode for improving the electrochemical performance of microbial fuel cells. In Energy Storage Battery Systems-Fundamentals and Applications. IntechOpen.
35.Cui, X., Liu, Y., Han, G., Cao, M., Han, L., Zhou, B., ... & Jiang, J. (2021). Wood‐Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc–Air Battery. Small. 17 (38), 2101607.
36.Maruyama, J., & Abe, I. (2005). Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum. J. of Power Sources. 148 (1-8), 37-41.
37.Sevilla, M., & Fuertes, A. B. (2006). Catalytic graphitization of templated mesoporous carbons. Carbon. 44 (3), 468-474.
38.Punon, M., Jarernboon, W., & Laokul, P. (2022). Electrochemical performance of Palmyra palm shell activated carbon prepared by carbonization followed by microwave reflux treatment. Materials Research Express. 9 (6), 065603.
39.Santangelo, S., Messina, G., Faggio, G., Abdul Rahim, S. H., & Milone, C. (2012). Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquid‐ phase oxidised carbon nanotubes. J. of Raman Spectroscopy. 43 (10), 1432-1442.
40.Guo, Z., Ma, Y., Zhao, Y., Song, Y., Tang, S., Wang, Q., & Li, W. (2022). Trimetallic ZIFs-derived porous carbon as bifunctional electrocatalyst for rechargeable Zn-air battery. J. of Power Sources. 542, 231723.
41.Sindhuja, M., Harinipriya, S., Bala, A. C., & Ray, A. K. (2018). Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction. J. of Hazardous Materials. 355, 197-205.
42.Wei, L., Karahan, H. E., Zhai, S., Liu, H., Chen, X., Zhou, Z., ... & Chen, Y. (2017). Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Advanced Materials. 29 (38), 1701410.
43.Chang, B. Y., & Park, S. M. (2010). Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry. 3, 207-229.
44.Jüttner, K. (1990). Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochimica Acta. 35 (10), 1501-1508.