تأثیر عوامل فیزیوگرافیکی بر میزان شاخص سطح برگ در جنگل‌های پهن‌برگ استان گلستان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار، گروه جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استاد، گروه علوم اطلاعات جغرافیایی و رصد زمین (ITC)، دانشگاه توئنته، هلند.

4 استاد، گروه جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

5 عضو هیات علمی ، گروه جنگلشناسی و اکولوژی جنگل دانشکده علوم جنگل دانشگاه علوم کشاورزی و منابع طبیعی گرگان

6 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان،

چکیده

سابقه و هدف: شاخص سطح برگ (LAI) یکی از مهم‌ترین مشخصه‌های ساختاری بوم‌سازگان‌های جنگلی است که تأثیر زیادی را در تغییرات انرژی، آب‌وهوا، مدل‌های عملکردی جوی و گاز دارد. این شاخص اطلاعات زیادی در ارتباط با میزان فتوسنتز، تبخیر و تعرق و حاصلخیزی رویشگاه‌های مختلف در اختیار مدیران و برنامه ریزان قرار می‌دهد. عوامل فیزیوگرافیکی نیز (ارتفاع از سطح دریا، جهات جغرافیایی و شیب) نقش مهمی در میزان تغییرات شاخص سطح برگ درختان ایفا می‌کنند. در این پژوهش تغییرات شاخص سطح برگ درختان و درختچه‌های جنگلی در طبقات مختلف ارتفاع از سطح دریا، جهات جغرافیایی و شیب در جنگل‌های پهن‌برگ استان گلستان مورد مقایسه و ارزیابی می‌گردد.
مواد و روش: در این مطالعه جهت برداشت اطلاعات زمینی شاخص سطح برگ 230 قطعه‌نمونه دایره‌ای شکل به مساحت 1000 مترمربع با روش نمونه‌برداری سیستماتیک و شبکه 100×100 متر در پنج رویشگاه از غرب به شرق (کردکوی، شصت کلاته، زرین گل، سرخداری و لوه) پیاده شد. در مرکز هر قطعه‌نمونه تله برداشت برگ با ابعاد 60×60 سانتی‌متر برای اندازه‌گیری شاخص سطح برگ استفاده شد. ابتدا نقشه‌های ارتفاع از سطح دریا، جهت جغرافیایی و شیب نیز تهیه و مقادیر آن‌ها استخراج شد. سپس شاخص سطح برگ در طبقات مختلف ارتفاع از سطح دریا، جهت جغرافیایی و شیب با استفاده از آزمون‌های دانکن و تی مستقل مورد مقایسه و تجزیه‌وتحلیل قرار گرفت.
یافته‌ها: نتایج نشان داد که بیشترین میزان شاخص سطح برگ در رویشگاه کردکوی با 91/8 و کمترین میزان شاخص سطح برگ در رویشگاه زرین گل با 10/5 اندازه‌گیری شد. نتایج آنالیز واریانس نشان داد که تفاوت معنی‌داری بین شاخص سطح برگ در طبقات مختلف ارتفاع از سطح دریا در کل منطقه مورد مطالعه وجود دارد و با افزایش ارتفاع از سطح دریا تا حدود 1300 متر شاخص سطح برگ افزایش می‌یابد و بعد از آن شاخص سطح برگ تغییرات کمی دارد. نتایج آزمون دانکن و تی مستقل نشان داد تفاوت معنی‌داری بین شاخص سطح برگ رویشگاه‌ها در طبقات مختلف ارتفاع از سطح دریا، جهت جغرافیایی و شیب به جز رویشگاه کردکوی وجود ندارد.
نتیجه‌گیری: به‌طورکلی در این مطالعه ارتفاع از سطح دریا در مقایسه با شیب و جهت جغرافیایی به‌عنوان عامل بسیار مهم برای بررسی شاخص سطح برگ مطرح شد. بررسی تأثیر عوامل فیزیوگرافیکی مانند ارتفاع از سطح دریا، شیب و جهات جغرافیایی بر شاخص سطح برگ و پایش تغییرات آن جهت شناخت تدوین سیاست‌های مناسب برای کاهش اثرات تغییرات اقلیم و گرمایش جهانی و در مدیریت پایدار از اهمیت بسیار بالایی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of physiographic factors on the leaf area index in broadleaf forests of Golestan province

نویسندگان [English]

  • Seyedeh zahra Seyed mousavi 1
  • Jahangir Mohammadi 2
  • Roshanak Darvishzadeh 3
  • Shaban Shataee 4
  • Ramin Rahmani 5
  • Khalil Gorbani 6
1 Doctoral student of Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Professor, Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Professor at the Department of Geographical Information Sciences and Earth Observation (ITC), University of Twente, The Netherlands.
4 Professor of Forestry Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Associate Professor Department of Silviculture and Forest Ecology Faculty of Forest Sciences Gorgan University of Agricultural Sciences and Natural Resources (GUASNR)
6 Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Background and objective: Leaf area index (LAI) is one of the most important structural characteristics of forest ecosystems, which has a great impact on changes in energy, weather, atmospheric and gas functional models. This index provides managers and planners with a lot of information related to the amount of photosynthesis, evaporation and transpiration and fertility of different habitats. Physiographic factors also (elevation above sea level, aspect and slope) play an important role in the global LAI. In this research, the changes of the LAI in different classes of elevation, aspect and slope are compared and evaluated.
Materials and methods: n this study, 230 square-shaped sample plots with an area of 1000 square meters were used to collect the ground information of the leaf surface index using a systematic sampling method with a sampling grid of 100 x 100 meters in five sites (Kordkoy, Shast Kalateh, Zarrin Gol, Sokhdari and Loveh). In the center of each plot, a leaf harvesting trap with dimensions of 60 x 60 cm was used to measure the LAI. First, height maps from elevation, aspect and slope were also prepared and their values were extracted. Then the LAI was compared and analyzed in different classes of elevation, aspect and slope using Duncan's and independent t tests.
Results: The results of LAI showed that the elevation of LAI in Kordkoy vegetation was measured with 8.91 and the lowest level of LAI was measured with 5.10 in Zarrin Gol vegetation. The results of analysis of variance showed that there is a significant difference between the LAI in different classes of elevation above sea level in the entire study area. And with the increase in elevation above sea level to about 1300 meters, the LAI increases and after that, the LAI has little changes. The significant results of Duncan's test and independent t-test showed that there is no significant difference between the LAI of each site in different classes of elevation above sea level, aspect and slope, except for Kurdkoy site.
Conclusion: In general, in this study, the elevation compared to the slope and aspect was raised as a very important factor for investigating LAI. Investigating the effect of physiographic factors such as elevation above sea level, slope and aspect on the LAI and monitoring its changes in order to know the formulation of appropriate policies to reduce the effects of climate change and global warming and in sustainable management is of great importance.

کلیدواژه‌ها [English]

  • Leaf Area Index
  • Slope؛ Elevation above sea level؛Aspect؛ Slope
 1.Mohammadi, J., Shataei, S., & Namiranian, M. (2014). Comparison of quantitative and qualitative characteristics of forest structure and composition in natural and managed forest stands (Case study: Shast Kalate forests of Gorgan).
J. of Wood & Forest Science and Technology. 21 (1), 65-83.‏
2.Marvi Mohajer, M. R. (2006). Forestry and forest breeding. Tehran Univ. Press. 387p.
3.Chen, J. M., & Black, T. A. (1992). Foliage area and architecture of plant canopies from sunfleck size distributions. Agricultural and Forest Meteorology. 60 (3-4), 249-266.
4.Talebi, M., Sagheb-Talebi, Kh., & Jahanbazi, H. (2006). Site demands and some quantitative and qualitative characteristics of Persian Oak (Quercus brantii Lindl.) in Chaharmahal & Bakhtiari Province. Iranian J. of Forest and Poplar Research. 141, 67-79. [In Persian]
5.Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and Distributions. 5 (4), 165-174.‏
6.Tang, H., Brolly, M., Zhao, F., Strahler, A. H., Schaaf, C. L., Ganguly, S., Zhang, G., & Dubayah, R. (2014). Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sens. Environ. 143, 131-141.
7.Jin, H., Li, A., Xu, W., Xiao, Z., Jiang, J., & Xue, H. (2019). Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors. ISPRS J. of Photogrammetry and Remote Sensing. 154, 176-188.‏
8.Ryu, Y., Verfaillie, J., Macfarlane, C., Kobayashi, H., Sonnentag, O., Vargas, R., Ma, S., & Baldocchi, D. D. (2012). Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. J. Remote Sensing of Environment. 126, 116-125.
9.Adl, H. R. (2007). Estimation of leaf biomass and leaf area index of two major species in Yasuj forests. Iranian
J. of Forest and Poplar Research
. 15 (4), 417-426. [In Persian]
10.Brantley, S., Zinnert, J. C., & Young, D. R. (2011). Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies. J. Remote Sensing of Environment. 115, 514-523.
11.Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). LAI and chlorophyll estimation for heterogeneous grassland using hyperspectral measurements. ISPRS J. of photogrammetry and remote sensing.
63 (4), 409-426.
12.Sefidi, K., Esfandiary Darabad, F., & Azaryan, M. (2016). Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. J. IForest-Biogeosciences and Forestry.9 (4), 65-86.
13.Basiri, R. (2003). Ecological study of the vegetation zone of the oak and weevil with the analysis of environmental factors in Marivan, PhD thesis, Tarbiat Modares Univ., Noor Faculty of Natural Resources. Pp: 8-12. [In Persian]
14.Sheikholaslami, A., Yazdian, F., & Kialashki, M. (2008). Study on cover of tree and shrub species, Kojur region.
J. of Pejouhesh and Sazanddeghi. 74, 175-184.
15.Manion, P. D. (1991). Tree disease concepts. 2nd ed. Englewood Cliffs, New Jersey, Prentice-Hall (USA). 402p.
16.Cao, B., Du, Y., Li, J., Li, H., Li, L., Zhang, Y., & Liu, Q. (2015). Comparison of five slope correction methods for leaf area index estimation from hemispherical photography. IEEE Geoscience and Remote Sensing Letters. 12 (9), 1958-1962.‏
17.Eckhardt, L. G., & Menard, R. D. (2008). Topographic features associated with loblolly pine decline in central Alabama. Forest Ecology and Management. 255, 1735-1739.
18.Lomolino, M. V. (2001). Elevation gradients of species-density historical and prospective view. Global Ecology and Biogeography. 10, 3-13.
19.Griffiths, R. P., Madritch, M. D., & Swanson, A. K. (2009). The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecology and Management. 257, 1-7.
20.Tateno, R., & Takeda, H. (2003). Forest structure and tree species distribution in relation to topography mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research. 18, 559-571.
21.Kaufmann, R. M., & Ryan, G. M. (1986). Physiographic, stand, and environmental effects on individual tree growth and growth efficiency in subalpine forests. Tree Physiology. 2, 47-59.
22.Salick, J., Anderson, J., Woo, R., Sherman, N., Cili, A., & Dorje, S. (2004). Tibetan ethnobotany and gradient analyses. Menri (Medicine Mountains), Eastern Himalayas. Millennium Ecosystem Assessment. Economic Botany. 59: 4. 312-325.
23.España, F., Baret, & Weiss, M. (2008). Slope correction for LAI estimation from gap fraction measurements. Agricultural Forest Meteorol. 148 (10), 1553-1562.
24.Metaji, M., Ishaghi Rad, J., & Salimpour, F. (2014). Investigating the possibility of using ferns as a biological indicator of growing conditions in the forests of northern Iran (case study: Khairudkanar Nowshahr). Environmental Science and Technology Quarterly. 16 (1), 423-436. [In Persian]
25.Pourbabai, H., & Haqgoy, T. (2012). Effect of physiographical factors on tree species diversity (case study: Kandelat Forest Park. Iranian Forest and Poplar Research Quarterly. 21 (2), 243-255. [In Persian]
26.Valipour, A., Nemiranyan, M., Ghazanfari, H., Heshmat Elwaezin, M., Lexar Manfred, J., & Tobias, P. (2012). Relationships between forest structure and tree dimensions with physiographical factors in Armardeh forests (Northern Zagros). Quarterly J. of Iranian forest and poplar research. 21 (1), 20-37. [In Persian]
27.Hosseinzadeh, J., & Porhashmi, M. (2014). Investigating the crown indices of Iranian oak trees to the phenomenon of drying in the forests of Ilam. Iranian Forestry J. of Iranian Forestry Association. 7 (1), 57-66.
28.Kalantari, H., Fallah, A., & Hojjati, M. (2016). The effect of geographical orientation ecology on the growth
of Cupressus sempervirens L. var horizontalis in the hand-planted mass of Abbas Abad Behshahr. Environmental Science and Technology Quarterly. 18 (1), 163-175. [In Persian]
29.Golmohammadi, F., Hassanzad Navrodi, A., Boonyad, A., & Mirzaei, J. (2017). Effects of some environmental factors on dieback severity of trees in Middle Zagros forests of Iran (Case study: strait Daalaab, Ilam Province. J. Plant Research. 30 (3), 644-655. [In Persian]
30.Shataei Joybari, S., & Perma, R. (2010). Effect of physiographic and human on canopy cover and woody species diversity in Zagros forest. Iranian J. of Forest and Poplar Research, 18 (4), 539-555.
31.Oliver, D. C., & Larson, B. C. (1996). Forest stand dynamics. John Wiley & Sons, New York. 520p.
32.Guarin, A., & Taylor, A. H. (2005). Drought triggered tree mortality in mixed conifer forests in Yosemite National Park. California. USA. Forest Ecology and Management. 218, 229-244.
33.Burrascano, S., Keeton, W. S., Sabatini, F. M., & Blasi, C. (2013). Commonality and variability in the structural attributes of moist temperate old-growth forests: a global review. Forest Ecology and Management. 291, 458-479.
34.Amini, S., Seyedi, N., Fatehi, P., & Pir Bavaghar, M. (2022). Assessment of elevation and geographical aspect variability on leaf characteristics of‎ trees in the North Zagros forests. Forest Research and Development. 8 (4), 355-369.
35.Schleppi, P., Conedera, M., Sedivy, I., & Thimonier, A. (2007). Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology. 144, 236-242.‏
36.Chen, W., & Cao, C. (2012). Topographic correction-based retrieval of leaf area index in mountain areas.
J. Mountain Science. 9, 166-174.
37.Gonsamo, A., & Pellikka, P. (2008). Methodology comparison for slope correction in canopy leaf area index estimation using hemispherical photography. Forest Ecology and Management. 256, 749-759.
38.Yin, G., Cao, B., Li, J., Fan, W., Zeng, Y., Xu, B., & Zhao, W. (2020). Path length correction for improving leaf area index measurements over sloping terrains: A deep analysis through computer simulation. IEEE Transactions on Geoscience and Remote Sensing. 58 (7), 4573-4589.‏
39.Jin, H., Li, A., Xu, W., Xiao, Z., Jiang, J., & Xue, H. (2019). Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors. ISPRS J. of Photogrammetry and Remote Sensing. 154, 176-188.
40.Walter, J. M. N., & Torquebiau, E. F. (2000). The computation of forest leaf area index on a slope using fish-eye sensors. J. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie. 323 (9), 801-813.
41.Kordkoy management of forestry project. (2008). Forests, Range and Watershed Organization. 249p.
42.Doctor Bahramnia Forestry Plan Management. (2009). Forest Science Faculty, Gorgan University of Agricultural Sciences and Natural Recourses, 478p.
43.Anonym. (1991). Zarrin Gol forestry plan booklet, Golestan Province General Department of Natural Resources, 240p.
44.Anonym. (2007). Sorkhdary forest plan booklet. Golestan Province General Department of Natural Resources, 253p.
45.Anonym. (1981). Loveh the forestry plan booklet. Golestan Province General Department of Natural Resources, 240p.
46.Bradshaw, J. D., Rice, M. E., & Hill, J. H. J. J. o. t. K. E. S. (2007). Digital analysis of leaf surface area: effects of shape, resolution, and size. 80 (4), 339-347.
47.Waring, R.H. (1983). Estimating forest growth and efficiency in relation to the canopy leaf area. Advances in Ecological Research. 13, 327-354.
48.Chason, J., Baldocchi, D., & Hutson, M. (1991). A comparison of direct and indirect methods for estimating forest leaf area. Agricultural and Forest Meteorology. 57, 107-28.
49.Eermak, J. (1998). Leaf distribution in large trees and stands of the floodplain forest in southern Moravia. Tree Physiology. 18, 727-737.
50.Tran, P. (2014). Allometry, Biomass and litter decomposition of the New Zealand mangrove Avicennia marina var. australasica. MSc thesis. School of Applied Sciences. New Zealand, 63p.
51.Kamal, M., Phinn, S., Johansen, K., & Adi, N. S. (2016). Estimation of mangrove leaf area index from ALOS AVNIR-2 data (A comparison of tropical and sub-tropical mangroves). In AIP Conference Proceedings. AIP Publishing.
52.Rouhi Moghaddam, E. (2015). Investigation of the relationship between LAI and soil carbon sequestration in pure and mixed planted stands of Oak (Case Study: the lowland forests of Chamestan). Natural Ecosystems of Iran. 5 (4), 11-22. [In Persian]
53.Jin, H., Li, A., Xu, W., Xiao, Z., Jiang, J., & Xue, H. (2019). Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors. ISPRS J. of Photogrammetry and Remote Sensing. 154, 176-188.‏
54.Mohsennezhad, M., Shokri, M., Zali, H. & Jafarian, Z. (2010). The effects of soil properties and physiographic factors on plant community's distribution (Case study: Behrestagh Rangeland, Haraz). Rangeland. 4 (2), 262-275. [In Persian]
55.Mark, A. F., Dickinson, K. J., & Hofstede, R. G. (2000). Alpine vegetation, Plant distribution, Life form, and environments a humid New Zealand region. Article Antarctic and Alpine Research. 32, 240-254.
56.Hanna, A. Y., Harlan, P. W., & Lewis, D. T. (1982). Soil available water as influenced by landscape. Agronomy J. 1982, 999-1004.
57.Suarez, M. L., Ghermandi, L., & Kitzberger, T. (2004). Factors predisposing episodic drought-induced tree mortality in Nothofagus-site, climatic sensitivity, and growth trends. J. of Ecology. 92, 954-966.