1.Amiri, M., Rahmani, R., & Sagheb-Talebi, Kh. (2015). Canopy gaps characteristics and structural dynamics in a natural unmanaged oriental beech (Fagus orientalis Lipsky) stand in the north of Iran. Caspian J. of Environmental Sciences. 13(3), 259-264. [In Persian]
2.Khodaverdi, S., Amiri, M., Kartoolinejad, D., & Mohammadi, J. (2018). Characteristics of canopy gap in a broad-leaved mixed forest (Case study: District No. 2, Shast-Kalateh Forest, Golestan province). Iranian J. of Forest and Poplar Research. 26(1), 24-35. [In Persian]
3.Orman, O., Dobrowolska, D., & Szwagrzykc, J. (2018). Gap regeneration patterns in Carpathian old-growth mixed beech forests – Interactive effects of the spruce bark beetle canopy disturbance and deer herbivory. Forest Ecology and Management. 430, 451-459.
4.Sefidi, K., & Marvi-Mohajer, M.R. (2010). Characteristics of coarse woody debris in successional stages of natural beech (Fagus orientalis Lipsky) forests of Northern Iran. J. of Forest Science. 56(1), 7-17. [In Persian]
6.Goodbody, T. R. H. H., Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A., & Sanelli, M. (2020). Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest.
Scientific Reports. 10(1), 1-12.
https://doi.org/10.1038/ s41598-020-62878-z.
7.Yao, A. W., Chiang, J. M., Mcewan, R., & Lin, T. C. (2015). The effect of typhoon-related defoliation on the ecology of gap dynamics in a subtropical rain forest of Taiwan.
J. of Vegetation Science, 26(1), 145-154.
https://doi.org/ 10.1111/jvs.12217.
8.Petritan, A. M., Nuske, R. S., Petritan, I. C., & Tudose, N. C. (2013). Gap disturbance patterns in an old-growth sessile oak (Quercus petraea L.) European beech (Fagus sylvatica L.) forest remnant in the Carpathian Mountains, Romania. Forest Ecology and Management. 308, 67-75.
9.Abdollahnejad, A., Panagiotidis, D., & Surový, P. (2017). Forest canopy density assessment using different approaches - Review.
J. of Forest Science.
63(3), 107-116.
https://doi.org/10.17221/110/2016-JFS.
10.Nuske, R. S. (2019). Acquisition and Characterization of Canopy Gap Patterns of Beech Forests. (Doctoral dissertation, Georg-August-Universität Göttingen).
11.Hopkinson, C., Chasmer, L., Barr, A. G., Kljun, N., Black, T. A., & McCaughey, J. H. M. (2016). Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning. biometry and eddy covariance data.
Remote Sensing of Environment, 181, 82-95.
https://doi.org/10.1016/ j.rse.2016.04.010.
12.Valbuena, R., Maltamo, M., Mehtätalo, L., & Packalen, P. (2017). Key structural features of boreal forests may be detected directly using L‐moments from airborne lidar data.
Remote Sensing of Environment, 194, 437-446.
https:// doi.org/10.1016/j.rse.2016.10.024.
13.Perroy, L. Y., Sullivan, T., & Stephenson, N. (2017). Assessing the impact of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS J. of Photogrammetry and Remote Sensing. 125, 174-183.
14.Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. J. of Forestry Research, 26, 791-797.
15.Zhang, Ch., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture. 13, 693-712. DOI: 10.1007/s11119-012-9274-5.
16.Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S. F., Gioli, B., Matese, A., Miglietta, F., Vagnoli, C., Zaldei, A. & Wallace, L. (2017). Forestry applications of UAVs in Europe: a review. International J. of Remote Sensing. 38(8-10), 2427-2447.
17.Mlambo, R., Woodhouse, H. I., Gerard, F., & Anderson, K. (2017). Structure from Motion (SFM) photogrammetry with drone data: A low-cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests. 8(68), 1-20.
18.Hunt, E. R., Hively, W. D., Daughtry, C. S., McCarty, G. W., Fujikawa, S. J., Ng, T. L., Tranchitella, M., Linden, D. S., & Yoel, D. W. (2008). Remote sensing of crop leaf area index using unmanned airborne vehicles. In Proceedings of the Pecora. 17, (18-20).
19.Amini, Sh., Shataee Jouibary, Sh., Moayeri, M. H., & Rahmani, R. (2021). Canopy gap delineation using UAV data in a Hyrcanian forest (Case study: Shastklateh Forest). Iranian J. of Forest. 14(2), 135-154. [In Persian]
20.Tanaka, H., & Nakashizuka, T. (1997). Fifteen years of canopy gap dynamics analyzed by aerial photographs in a temperate deciduous forest, Japan. Ecology. 78(2), 612-620.
21.Henbo, Y., Itaya, A., Nishimura, N., & Yamamoto, S. I. (2006). Long-term canopy dynamics analyzed by aerial photographs and digital elevation data in a subalpine old-growth coniferous forest. Ecoscience, 13(4), 451-458.
24.Sefidi, K., Mohadjer, M. R., & Mosandl, R. (2011). Canopy gaps and regeneration in old-growth oriental beech (Fagus orientalis, Lipsky) stands, northern Iran.
Forest Ecology and Management, 262(6), 1094-1099,
https://doi.org/10.1016/j.foreco.2011.06.008.
25.Feldmann, E., Drößler, L., Hauck, M., Kucbel, S., Pichler, V., & Leuschner, C. (2018). Canopy gap dynamics and tree understory release in a virgin beech forest, Slovakian Carpathians. Forest Ecology and Management. 415, 38-46.
26.Khodaverdi, S., Amiri, M., Kartoolinejad, D., & Mohammadi, J. (2019). Canopy gaps characteristics of pure and mixed stands in the Hyrcanian forests of northern Iran.
Annals of Silvicultural Research. 43(2), 62-70.
https://doi.org/10.12899/asr-1882.
27.Akbari Mazdi, R., Mataji, A., & Fallah, A. (2021). Canopy gap dynamics, disturbances, and natural regeneration patterns in a Beech-dominated Hyrcanian old-growth forest.
Baltic Forestry. 27(1), 535.
https://doi.org/ 10.46490/bf535.
28.Vepakomma, U., Kneeshaw, D., & Fortin, M. J. (2012). Spatial contiguity and continuity of canopy gaps in mixed wood boreal forests: persistence, expansion, shrinkage, and displacement.
Journal of Ecology. 100(5), 1257-1268.
https://doi.org/10.2307/23257547.
29.Littell, J. S., Peterson, D. L., & Tjoelker, M. (2008). Douglas-fir growth in mountain ecosystems: water limits
tree growth from stand to region.
Ecological Monographs. 78(3), 349-368.
https://doi.org/10.1890/07-0712.1.
30.Gray, A. N., Spies, T. A., & Pabst, R. J. (2012). Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest.
Forest Ecology and Management. 281, 111-120.
https://doi.org/10.1016/j.foreco.2012.06.035.
31.Diaci, J., Adamic, T., & Rozman, A. (2012). Gap recruitment and partitioning in an old-growth beech forest of the Dinaric Mountains: influences of the light regime, herb competition, and browsing.
Forest Ecology and Management. 285, 20-28.
https://doi.org/ 10.1016/j.foreco.2012.08.010.
32.Zhu, C., Zhu, J., Zheng, X., Lu, D., & Li, X. (2017). Comparison of gap formation and distribution pattern induced by wind/snowstorm and flood in a temperate secondary forest ecosystem, Northeast China.
Silva Fennica. 51(5).
https://doi.org/10.14214/sf.7693.
33.Henbo, Y., Itaya, A., & Nishimura, N. (2004). Long-term canopy dynamics in a large area of temperate old-growth beech (
Fagus crenata) forest: analysis by aerial photographs and digital elevation models.
Journal of Ecology. 92(6), 945-953.
https://doi.org/10. 1111/j.1365-2745.2004.00932.x.
34.Kenderes, K., Král, K., Vrška, T., & Standovár, T. (2009). Natural gap dynamics in a Central European mixed beech-spruce-fir old-growth forest. Ecoscience. 16 (1), 39-47.
35.Blackburn, G. A. (2014). Forest disturbance and regeneration: a mosaic of discrete gap dynamics and open matrix regimes?
Journal of Vegetation Science. 25(6), 1341-1354.
https:// doi.org/10.1111/jvs. 12201.
36.Zhu, C., Zhu, J.,Wang, G., Zheng, X., Lu, D., & Gao, T. (2019). Dynamics of gaps and large openings in a secondary forest of Northeast China over 50 years. Annals of Forest Science. 76(72), https://doi.org/10.1007/s13595-019-0844-9.
39.Sadeghzadeh, H., & Rostaghi., A. (2011). A Study of Vegetative Yield of Borussia Pine (Case Study: Arab-Dagh Forestry Project). Iranian J. of Forest. 3, 201-212. [In Persian]
40.Baatz, M., & Schape, A. (1999). Object-oriented and multi-scale image analysis in the semantic network. in Proc. of
2nd Int. symposium on operalization of remote sensing. Enschede, ITC. 148-157.
41.Naseri, M. H., Shataee Jouibary, Sh., & Habashi, H. (2023). Analysis of forest tree dieback using UltraCam and UAV imagery. Scandinavian J. of Forest Research.
42.Naseri, M. H., Shataee Jouibary, Sh., & Habashi, H. (2023). Zoning of tree crown leaf burn using UAV and Sentinel 2 images in Deland Forest Park, Golestan province. J. of Wood and Forest Science and Technology. 29 (4), 75-92.
43.Runkle, J. R. (1981). Patterns of disturbance in some old-growth mesic forests of Eastern North America. Ecology. 63(5), 1533-1546.
44.Brokaw, N. V., & Scheiner, S. M. (1982). Species composition in gaps and structure of a tropical forest. Ecology, 538-541.
45.Bonnet, S., Gaulton, R., Lehaire, F., & Lejeune, P. (2015). Canopy gap mapping from airborne laser scanning: An assessment of the positional and geometrical accuracy.
Remote Sensing. 7(9), 11267-11294.
https://doi.org/ 10. 3390/rs70911267.
46.Koukoulas, S., & Blackburn, G.A. (2004). Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS.
International J. Remote Sensing. 25(15), 3049-3072.
https://doi.org/10.1080/014311603100016.
47.Gaulton, R., & Malthus, T.J. (2010). LiDAR mapping of canopy gaps in continuous cover forests: A comparison of canopy height model and point cloud-based techniques. International J of Remote Sensing. 31(5), 1193-1211. https://doi.org/10.1080/01431160903380565.
48.Kucbel, S., Jaloviar, P., Saniga, M., Vencurik, J., & Klimaš, V. (2010). Canopy gaps in an old-growth fir-beech forest remnant of Western Carpathians. European J. of Forest Research. 129(3), 249–259. https://doi.org/ 10. 1007/s10342-009-0322-2.
49.White, J. C., Tompalski, P., Coops, N. C., & Wulder, M. A. (2018). Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sensing of Environment. 208, 1-14.
50.Vaughn, N. R., Asner, G. P., & Giardina, C. P. (2015). Long‐term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest. Ecosphere. 6(12), 1-15.
51.Senécal, J. F., Doyon, F., & Messier, C. (2018). Tree death not resulting in gap creation: an investigation of canopy dynamics of northern temperate deciduous forests. Remote Sensing. 10(1), 121.
52.Xuegang, M., Liang, Z., & Fan. W. (2020). Object-oriented automatic identification of forest gaps using digital orthophoto maps and LiDAR data.
Canadian J. of Remote Sensing, 46(2), 177-192.
https://doi.org/ 10. 1080/07038992.2020.1768515.
53.Schliemann, S. A., & Bockheim, J. G. (2011). Methods of studying treefall gaps: a review. Forest Ecology and Management. 261(7), 1143-1151.
54.Manabe, T., Shimatani, K., Kawarasaki, S., Aikawa, S. I., & Yamamoto, S. I. (2009). The patch mosaic of an old-growth warm-temperate forest: patch level descriptions of 40-year gap-forming processes and community structures.
Ecological research. 24(3), 575-586.
https://doi.org/ 10. 1007/s11284-008-0528-7.
55.Stiers, M., Willim, K., Seidel, D., Ammer, C., Kabal, M., Stillhard, J., & Annighöfer, P. (2019). Analyzing spatial distribution patterns of European beech (Fagus sylvatica L.) regeneration in dependence of canopy openings. Forests. 10(8). https://doi.org/ 10.3390/ f10080637.
56.Liu, QH., & Hytteborn, H. (1991). Gap structure, disturbance, and regeneration in a primeval
Picea-abies forest.
J. of Vegetation Science. 2(3), 391-402.
https://doi.org/10.2307/3235932.
57.Caron, M. N., Kneeshaw, D. D., De Grandpré, L., Kauhanen, H., & Kuuluvainen, T. (2009). Canopy gap characteristics and disturbance dynamics in old-growth Picea abies stands in northern Fennoscandia: Is the forest in quasi-equilibrium? In Annales Botanici Fennici. 46(4), 251-262.
58.Kian, S., Kouchaksaraei, M. T., Esmailzadeh, O., & Alavi, S. J. (2017). Gap characteristics and disturbance regime in an intact Hyrcanian oriental beech forest, Iran. Austrian Journal of Forest Science. 2017(4), 323-345.
59.Bi, S., Tan, Y., Wang, Y., Liu, M., & Mao, X. (2020). Quantification of spatial structure characteristics of typical natural secondary forest gaps in Northeastern China.
Research Square.
https://doi.org/10.21203/rs.3.rs-38728/ v1.
60.Dobrowolska, D., Piasecka, Z., Kuberski, L., & Stere´nczak, K. (2022). Canopy gap characteristics and regeneration patterns in the Białowie˙za forest based on remote sensing data and field measurements. Forest Ecology and Management. 511, 120123.
61.Vepakomma, U., St‐Onge, B., & Kneeshaw, D. (2011). Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi‐temporal lidar data. Ecological Applications. 21(1), 99-121.
62.Torimaru, T., Itaya, A., & Yamamoto, S. I. (2012). Quantification of repeated gap formation events and their spatial patterns in three types of old-growth forests: Analysis of long-term canopy dynamics using aerial photographs and digital surface models.
Forest Ecology and Management. 284, 1-11.
https:// doi.org/10.1016/j.foreco.2012.07.044.
63.Fujita, T., Itaya, A., Miura, M., Manabe, T., & Yamamoto, S.I. (2003). Long-term canopy dynamics analyzed by aerial photographs in a temperate old-growth evergreen broad-leaved forest. J. of Ecology. 91(4), 686-693. https:// doi.org/10. 1046/ j.1365-2745.2003.00796.x.
64.Vaughn, N. R., Asner, G. P., & Giardina, C. P. (2015). Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest. Ecosphere. 6(12), 1-15. https://doi.org/10.1890/ ES15-00235.1.