1.Mohseni Tabar, M., Tabarsa, T., Mashkour, M. and Khazaeian, A. 2015. Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials. J. of the Indian Academy of Wood Science. 12: 1. 15-21.
2.Habibzade, S., Omidvar, A., Farahani, M., and Mashkour, M. 2014. Effect of nano-ZnO on decay resistance and artificial weathering of wood polymer composite. J. of Nanomaterials and Molecular Nanotechnology. 3: 3. 1-5.
3.Holy, S., Temiz, A., Köse Demirel, G., Aslan, M., and Mohamad Amini, M.H. 2022. Physical properties, thermal and fungal resistance of Scots pine wood treated with nano-clay and several metal-oxides nanoparticles. Wood Material Science & Engineering. 17: 3. 176-185.
4.Boury, B., and Plumejeau, S. 2015. Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chemistry. 17: 1. 72-88.
5.Mendoza‐Garcia, A., and Sun, S. 2016. Recent advances in the high‐temperature chemical synthesis of magnetic nanoparticles. Advanced Functional Materials. 26: 22. 3809-3817.
6.Tokarev, A., Yatvin, J., Trotsenko, O., Locklin, J., and Minko, S. 2016. Nanostructured soft matter with magnetic nanoparticles. Advanced Functional Materials. 26: 22. 3761-3782.
7.Berglund, L.A., and Burgert, I. 2018. Bioinspired wood nanotechnology for functional materials. Advanced Materials. 30: 19. 1704285-1704300.
8.Tan, Y., Wang, K., Dong, Y., Zhang, W., Zhang, S., and Li, J. 2020. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure. Surface and Coatings Technology. 383: 125240.
9.Mashkour, M., and Ranjbar, Y. 2018. Superparamagnetic Fe3O4@ wood flour/ polypropylene nanocomposites: Physical and mechanical properties. Industrial Crops and Products. 111: 47-54.
10.Mashkour, M., Kimura, T., Kimura, F., Mashkour, M., and Tajvidi, M. 2014. One-dimensional core–shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Advances. 4: 94. 52542-52549.
11.Segmehl, J.S., Laromaine, A., Keplinger, T., May-Masnou, A., Burgert, I., and Roig, A. 2018. Magnetic wood by in situ synthesis of iron oxide nanoparticles via a microwave-assisted route. J. of Materials Chemistry C. 6: 13. 3395-3402.
12.Cheng, Z., Wei, Y., Liu, C., Chen, Y., Ma, Y., Chen, H., Liang, X., Sun, N.X., and Zhu, H. 2020. Lightweight and construable magnetic wood for electromagnetic interference shielding. Advanced Engineering Materials. 22: 10. 2000257.
13.Goldoust Jooibari, A., Mashkour, M., Tabarsa, T., and Yousefi, H. 2020. Fabrication and evaluation of physical and mechanical properties of magnetic-cellulose paper/epoxy resin nanocomposites. J. of Wood and Forest Science and Technology. 27: 3. 93-108.
14.Mashkour, M., Moradabadi, Z., and Khazaeian, A. 2017. Physical and tensile properties of epoxy laminated magnetic bacterial cellulose nanocomposite films. J. of Applied Polymer Science. 134: 30. 45118.
15.Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., Hitz, E., Luo, W., and Hu, L. 2018. Wood‐based nanotechnologies toward sustainability. Advanced Materials. 30: 1. 1703453.
16.Asdrubali, F., Ferracuti, B., Lombardi, L., Guattari, C., Evangelisti, L., and Grazieschi, G. 2017. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Building and Environment. 114: 307-332.
17.Khan, G., and Chaudhry, A.K. 2007. Effect of spacing and plant density on the growth of poplar (Populus deltoides) trees under agro-forestry system. Pak. J. of Agricultural Science. 44: 2. 321-327.
18.Öncel, M., Vurdu, H., Aydoğan, H., Özkan, O.E., and Kaymakci, A. 2019. The tensile shear strength of outdoor type plywood produced from fir, alnus, pine and poplar wood. Wood Research. 64: 5. 913-920.
19.Kong, L., Guan, H., and Wang, X. 2018. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustainable Chemistry & Engineering. 6: 3. 3349-3357.
20.Shen, X., Jiang, P., Guo, D., Li, G., Chu, F., and Yang, S. 2020. Effect of furfurylation on hierarchical porous structure of poplar wood. Polymers. 13: 1. 32.
21.Li, J., Zhang, A., Zhang, S., Gao, Q., Chen, H., Zhang, W., and Li, J. 2018. High‐performance imitation precious wood from low‐cost poplar wood via high‐rate permeability of phenolic resins. Polymer Composites. 39: 7. 2431-2440.
22.Dong, Y., Zhang, W., Hughes, M., Wu, M., Zhang, S., and Li, J. 2019. Various polymeric monomers derived from renewable rosin for the modification of fast-growing poplar wood. Composites Part B: Engineering. 174: 106902.
23.Jones, D., Sandberg, D., and Gicomo, G. Wood modification in Europe: A state-of-the-art about processes, products, applications; Firenze University Press, 2019.
24.Dong, Y., Qin, Y., Wang, K., Yan, Y., Zhang, S., Li, J., and Zhang, S. 2016. Assessment of the performance of furfurylated wood and acetylated wood: comparison among four fast-growing wood species. BioResources. 11: 2. 3679-3690.
25.Militz, H., and Lande, S. 2009. Challenges in wood modification technology on the way to practical applications. Wood Material Science and Engineering. 4: 1-2. 23-29.
26.Dong, Y., Ma, E., Li, J., Zhang, S., and Hughes, M. 2020. Thermal properties enhancement of poplar wood by substituting poly (furfuryl alcohol) for the matrix. Polymer Composites. 41: 3. 1066-1073.
27.Mattos, B.D., De Cademartori, P.H., Missio, A.L., Gatto, D.A., and Magalhães, W.L. 2015. Wood-polymer composites prepared by free radical in situ polymerization of methacrylate monomers into fast-growing pinewood. Wood Science and Technology. 49: 6. 1281-1294.
28.Li, Y. 2011. Wood-polymer composites. Advances in Composite Materials-Analysis of Natural and Man-Made Materials. BoD–Books on Demand. pp. 978-953.
29.Li, W., Wang, H., Ren, D., Yu, Y., and Yu, Y. 2015. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Science and Technology. 49: 4. 845-856.
30.Schneider, M. 1995. New cell wall and cell lumen wood polymer composites. Wood Science and Technology. 29: 2. 121-127.
31.Dong, Y., Wang, K., Li, J., Zhang, S., and Shi, S. Q. 2020. Environmentally benign wood modifications: a review. ACS Sustainable Chemistry & Engineering. 8: 9. 3532-3540.
32.Ghorbani, M., Poorzahed, N., and Amininasab, S.M. 2020. Morphological, physical, and mechanical properties of silanized wood-polymer composite. J. of Composite Materials. 54: 11. 1403-1412.
33.Li, Y.F., Liu, Y.X., Wang, X.M., Wu, Q.L., Yu, H.P., and Li, J. 2011. Wood–polymer composites prepared by the in situ polymerization of monomers within wood. J. of Applied Polymer Science. 119: 6. 3207-3216.
34.Esteves, B., Nunes, L., and Pereira, H. 2011. Properties of furfurylated wood (Pinus pinaster). European J. of Wood and Wood Products. 69: 4. 521-525.
35.Mantanis, G.I. 2017. Chemical modification of wood by acetylation or furfurylation: A review of the present scaled-up technologies. BioResources. 12: 2. 4478-4489.
36.Yang, T., Wang, J., Xu, J., Ma, E., and Cao, J. 2019. Hygroscopicity and dimensional stability of Populus euramericana Cv. modified by furfurylation combined with low hemicellulose pretreatment. J. of Materials Science. 54: 20. 13445-13456.
37.Liu, L., Chang, H.M., Jameel, H., and Park, S. 2018. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Bioresource Technology. 252: 165-171.
38.Sultan, M., Rahman, M., Hamdan, S., and Hossen, M. 2020. Materials Science Forum. pp. 29-36.
39.Hadi, Y.S., Mulyosari, D., Herliyana, E.N., Pari, G., Arsyad, W.O.M., Abdillah, I.B., and Gérardin, P. 2021. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. European J. of Wood and Wood Products. 79: 4. 1007-1015.
40.Lande, S., Westin, M., and Schneider, M. 2008. Development of modified wood products based on furan chemistry. Molecular Crystals and Liquid Crystals. 484: 1. 1-367.
41.Gan, W., Gao, L., Xiao, S., Gao, R., Zhang, W., Li, J., and Zhan, X. 2017. Magnetic wood as an effective induction heating material: Magnetocaloric effect and thermal insulation. Advanced Materials Interfaces. 4: 22. 1700777.
42.Lou, Z., Han, H., Zhou, M., Han, J., Cai, J., Huang, C., Zou, J., Zhou, X., Zhou, H., and Sun, Z. 2018. Synthesis of magnetic wood with excellent and tunable electromagnetic wave-absorbing properties by a facile vacuum/pressure impregnation method. ACS Sustainable Chemistry & Engineering. 6: 1. 1000-1008.
43.Amrhein, V., Greenland, S., and Mcshane, B. 2019. Scientists rise up against statistical significance. Nature. 567: 305-307.
44.Kaffashsaie, E., Yousefi, H., Nishino, T., Matsumoto, T., Mashkour, M., Madhoushi, M., and Kawaguchi, H. 2021. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Carbohydrate Polymers. 262: 117938.45.Wang, J., Fishwild, S.J., Begel, M., and Zhu, J. 2020. Properties of densified poplar wood through partial delignification with alkali and acid pretreatment. J. of Materials Science. 55: 29. 14664-14676.
46.Sreekala, M., Kumaran, M., and Thomas, S. 1997. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J. of Applied Polymer Science. 66: 5. 821-835.
47.Mashkour, M., and Mashkour, M. 2021. A Simple and scalable approach for fabricating high-performance superparamagnetic natural cellulose fibers and Papers. Carbohydrate Polymers. 256: 117425.
48.Mashkour, M., Tajvidi, M., Kimura, F., Yousefi, H., and Kimura, T. 2014. Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. ACS applied materials & interfaces. 6: 11. 8165-8172.
49.Chia, C., Zakaria, S., Ahamd, S., Abdullah, M., and Jani, S.M. 2006. Preparation of magnetic paper from kenaf: lumen loading and in situ synthesis method. American J. of Applied Sciences. 3: 3. 1750-1754.
50.Dong, Y., Yan, Y., Zhang, Y., Zhang, S., and Li, J. 2016. Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability. Wood Science and Technology. 50: 3. 503-517.
51.Shaterabadi, Z., Nabiyouni, G., Goya, G.F. and Soleymani, M. 2022. The effect of the magnetically dead layer
on the magnetization and the magnetic anisotropy of the dextran-coated magnetite nanoparticles. Applied Physics A. 128: 8. 1-10.
52.Abbas, M., Takahashi, M., and Kim, C. 2013. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J. of nanoparticle research. 15: 1. 1-12.
53.Pfriem, A., Dietrich, T., and Buchelt, B. 2012. Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood. Holzforschung. 66: 2. 215-218.
54.Sejati, P.S., Imbert, A., Gérardin-Charbonnier, C., Dumarçay, S., Fredon, E., Masson, E., Nandika, D., Priadi, T., and Gérardin, P. 2017. Tartaric acid catalyzed furfurylation of beech wood. Wood Science and Technology. 51: 2. 379-394.
55.Beck, G., Hill, C., Cocher, P.M. and Alfredsen, G. 2019. Accessibility of hydroxyl groups in furfurylated wood at different weight percent gains and during Rhodonia placenta decay. European J. of Wood and Wood Products. 77: 5. 953-955.