1.Adab, H., Kasturi, D., and Karim, S. 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards.65: 3. 1723-1743.
2.Barčić, D., Dubravac, T., and Vučetić, M. 2020. Potential hazard of open space fire in black pine stands (Pinus nigra JF Arnold) in regard to Fire severity. South-east European Forestry. 11: 2. 161-168.
3.Bedia, J., Herrera, S., Gutiérrez, J.M., Benali, A., Brands, S., Mota, B., and Moreno, J.M. 2015. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology. 214: 1. 369-379.
4.Camia, A., Bovio, G., Aguado, I., and Stach, N. 1999. Meteorological fire danger indices and remote sensing. Remote Sensing of Large Wildfires.34: 1. 39-59.
5.Cortez, P.G., and Morais, A. 2007. A data mining approach to predict forest fires using meteorological data. In: Proceeding of the 13th Portuguese conference an artificial intelligence. 21: 2. 512-523.
6.Chaei, A. 2000. Fire effects on vegetation changes in the Golestan National Park. MSc. Thesis, University of Mazandaran, 85p. (In Persian)
7.Christensen, R.H.B. 2015. Statistical methodology for sensory discrimination tests and its implementation in sens R. The American Statistician. 62: 1. 22-26.
8.De Groot, W.J., Goldammer, J.G., Keenan, T., Brady, M.A., Lynham, T.J., Justice, C.O., and O'Loughlin, K. 2006. Developing a global early warning system for wildland fire. Forest Ecology and Management. 234: 1. 10-24.
9.Dowdy, A.J., Mills, G.A., Finkele, K., and de Groot, W. 2010. Index sensitivity analysis applied to the Canadian forest fire weather index and the McArthur forest fire danger index. Meteorological Applications. 17: 3. 298-312.
10.Eshaghi, M.A., and Shataee, Sh. 2016. Preparation map of forest fire risk using SVM, RF and MLP algorithms (Case study: Golestan national park. Northeastern Iran. J. of Wood and Forest science and Technology. 23: 4. 133-154. (In Persian)
11.Eskandari, S. 2015. Investigation on the relationship between climate change and fire in the forests of Golestan Province. Forest and Range Protection Research. 13: 1. 1-10. (In Persian)
12.Finney, M.A. 2005. The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management. 211: 1. 97-108.
13.Fogariti, L., and Catchpole, P. 1998. Adoption vs. adaptation: lessons from applying the Canadian forest fire danger rating system in New Zealand. 14th international conferences on Fire and Forest Meteorology. 1: 10. 11-14.
14.Galanter, M., Levy, H., and Carmichael, G.R. 2000. Impacts of biomass burning on tropospheric CO. NO x, and O3. J. of Geophysical Research: Atmospheres. 105: 5. 6633-6653.
15.Hamadeh, N., Karouni, A., Daya, B., and Chauvet, P. 2017. Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon and Mediterranean. Assessment versus prevalent meteorological indices. Case Studies in Fire Safety. 7: 8-22.
16.Hamidi, N., Esmaeily, A., and Faramarzi, H. 2020. Analysis of the potential fire hazard scenarios using GIS and RS. A case study of Lordegan forests. Emergency management.9: 1. 17-27. (In Persian)
17.Holsten, A., Dominic, A.R., Costa, L., and Kropp, J.P. 2013. Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management.287: 1. 123-131.
18.House, J.I., Colin Prentice, I., and Le Quere, C. 2002. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biology. 8: 11. 1047-1052.
19.Johnston, L.M., Wang, X., Erni, S., Taylor, S.W., McFayden, C.B., Oliver, J.A., and Flannigan, M.D. 2020. Wildland fire risk research in Canada. Environmental Reviews. 28: 2. 164-186.
20.Pérez Porras, F.J., Triviño Tarradas, P., Cima Rodríguez, C., Meroño de Larriva, J.E., García Ferrer, A., and Mesas-Carrascosa, F.J. 2021. Machine learning methods and synthetic data generation to predict large wildfires. Sensors. 21: 11. 3694-3713
21.Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 29: 1. 1-27.
22.Lawson, B.D., and Armitage, O.B. 2008. Weather guide for the Canadian forest fire danger rating system. Canadian forest Service. Northern Forestry Centre. 1: 1. 1-84.
23.Madjnoonian, H., Zehzad, B., and Kiabi, B. 1999. Golestan National Park (Biosphere Reserve) – Department of the Environment. 130p. (In Persian)
24.Nikolopoulos, E.I., Destro, E., Bhuiyan, M.A.E., Borga, M., and Anagnostou, E.N. 2018. Evaluation of predictive models for post-fire debris flow occurrence in the western United States. Natural Hazards and Earth System Sciences. 18: 9. 2331-2343.
25.Nyatondo, U.N. 2010. Fire spread modeling in Majella national park, Italy. MSc thesis. International institute for geo information science and Earth observation, Enschede. 91p.
26.Papagiannaki, K., Giannaros, T.M., Lykoudis, S., Kotroni, V., and Lagouvardos, K. 2020. Weather-related thresholds for wildfire danger in a Mediterranean region. The case of Greece. Agricultural and Forest Meteorology. 291: 1. 76-108.
27.Parsakhoo, A., Eshaghi, M.A.,and Joybari, S. 2016. Design and evaluation of helicopter landing variants for firefighting in Golestan national park. Northeast of Iran.Caspian J. of Environmental Sciences. 14: 4. 321-329.
28.Pourtaghi, Z.S., Pourghasemi, H.R., and Rossi, M. 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences. 73: 4. 1515-1533.
29.Shahani, A.R., and Rahai A. 2020. Causes, effects, challenges and strategies to combat forest and rangeland fires. Research center of the Islamic consultative assembly. 17288: 250. 13-14. (In Persian)
30.Rodrigues, M., Alcasena, F., and Vega-García, C. 2019. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment. 666: 915-927.
31.Rodrigues, M., González-Hidalgo, J.C., Peña-Angulo, D., and Jiménez-Ruano, A. 2019. Identifying wildfire-prone atmospheric circulation weather types on mainland Spain. Agricultural and Forest Meteorology. 264: 92-103.
32.Sabbaghi, H., Ziaiifar, A.M., and Kashaninejad, M. 2019. Design of fuzzy system for sensory evaluation of dried apple slices using infrared radiation. Iranian J. of Biosystems Engineering. 50: 1. 77-89. (In Persian)
33.Sakr, G., Elhajj, E.I.H., Mitri, G. 2011. Efficient forest fire occurrence prediction for developing countries using two weather parameters. Engineering Applications of Artificial Intelligence. 24: 888-894.
34.Salis, M. 2008. Fire behavior simulation in Mediterranean maquis using FARSITE. PhD Doctoral Thesis, Universita' DegliStudi Di Sassari. 95p.
35.Stojanova, D.G., Panov, P.G., Kobler, A.G., Dzeroski, S.G., and Taskova, K. 2006. Learning to predict forest fires with different data mining techniques. Conference on Data Mining and Data Warehouses. 1: 255-258.
36.Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., and van Leeuwen,T.T. 2010. Global fire emissions and
the contribution of deforestation. Savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics. 10: 23. 11707-11735.
37.Van Wagner, C.E., and Forest, P. 1987. Development and structure of the Canadian forest fire weather index system. In Can. For. Serv., Forestry Tech. Rep. 35p.
38.Van Wagner, C.E., and Pickett, T.L. 1985. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33: 18p.
39.Winkler, H., Formenti, P., Esterhuyse, D.J., Swap, R.J., Helas, G., Annegarn, H.J., and Andreae, M.O. 2008. Evidence for large-scale transport of biomass burning aerosols from sun photometry at a remote South African site. Atmospheric Environment. 42: 22. 5569-5578.
40.Zhang, Q.F., and Chen, W.J. 2007. Fire cycle of the Canada's boreal region and its potential response to global change. J. of Forestry Research. 18: 1. 55-61.