شناسایی مؤثرترین متغیرهای آب و هوایی ورودی سامانه هشدار آتش‌سوزی جنگل کانادا

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ، جنگلداری، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 استاد، گروه جنگلداری، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار ، گروه مهندسی آب، دانشکده مهندسی آب ‌و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

چکیده
سابقه و هدف: استفاده از سامانه‌های هشدار پیش‌هنگام اقلیمی وقوع آتش‌سوزی در عرصه‌های طبیعی یکی از راه‌های جلوگیری و مدیریت آتش‌سوزی است. عوامل متعددی در وقوع آتش‌سوزی تاثیر گذار است که می‌توان به دو دسته عوامل اقلیمی و انسانی تقسیم بندی کرد. از جمله مهم‌ترین عوامل اقلیمی موثر در ایجاد آتش‌سوزی جنگل‌ها می‌توان؛ افزایش درجه حرارت، کاهش بارندگی، کاهش رطوبت هوا و افزایش سرعت باد را نام برد. آتش‌سوزی جنگل باعث ایجاد ضررهای اقتصادی و زیست محیطی قابل توجهی می‌شود بنابراین، ارزیابی خطر آتش سوزی جنگل و استفاده از سامانه‌های هشدار آتش‌سوزی در دهه‌های اخیر به یک جزء مهم در مدیریت سرزمین تبدیل شده است. سیستم درجه‌بندی خطر آتش‌سوزی جنگل کانادا با دو زیرسیستم شاخص اقلیمی آتش‌سوزی و سیستم پیش‌بینی رفتار آتش‌سوزی جنگل ازجمله مهم‌ترین سامانه‌های هشدار ‌پیش‌هنگام خطر آتش‌سوزی جنگل در دنیا محسوب می‌شود. زیرسیستم شاخص اقلیمی آتش‌سوزی جنگل که به ارزیابی پتانسیل احتمال خطر وقوع آتش‌سوزی بر اساس اطلاعات اقلیمی منطقه مورد مطالعه می‌پردازد، نیازمند شناسایی و ورود متغیرهای آب و هوایی مؤثر می‌باشد. هدف از این تحقیق شناسایی مؤثرترین متغیرهای ورودی شاخص اقلیمی آتش‌سوزی جنگل کانادا در پیش‌بینی احتمال وقوع آتش‌سوزی جنگل در استان گلستان می‌باشد.
مواد و روش‌ها: به‌منظور برآورد سیستم شاخص اقلیمی آتش‌سوزی جنگل کانادا متغیرهای ورودی به سیستم که شامل چهار متغیر اقلیمی حداکثر درجه حرارت، رطوبت نسبی، سرعت باد در ارتفاع ده متری زمین و میزان بارش برای یک دوره 21 ‌ساله (1397-1376) در طول فصل آتش‌سوزی (فروردین تا دی‌ماه) از ایستگاه‌های سینوپتیک و تبخیرسنجی به صورت روزانه در سطح استان جمع‌آوری شد. محاسبات مربوط به برآورد شاخص اقلیمی آتش‌سوزی جنگل کانادا با استفاده از متغیرهای آب و هوایی استان گلستان در طول دوره مطالعه در هر ایستگاه انجام شد. سپس آزمون همبستگی و آنالیز مقیاس‌بندی چندبُعدی بین متغیرهای اقلیمی ورودی با شاخص خروجی سیستم با استفاده از ضرایب همبستگی اسپیرمن، پیرسون و کندال انجام شد.
یافته‌ها: نتایج نشان داد متغیر حداکثر درجه حرارت روزانه با ضریب همبستگی 91/0 در دوره مورد مطالعه بالاترین تأثیر را نسبت به سایر متغیرها بر شاخص اقلیمی آتش‌سوزی جنگل کانادا دارد. پس از حداکثر درجه حرارت، رطوبت نسبی روزانه، بارندگی روزانه و سرعت باد روزانه به ترتیب با ضرایب همبستگی 89/0-، 79/0- و 29/0، بیشترین تأثیر را بر خروجی سیستم اقلیمی آتش‌سوزی جنگل در پیش‌بینی احتمال وقوع آتش‌سوزی جنگل در این استان دارند. همچنین در این تحقیق ضریب همبستگی اسپیرمن بهتر از سایر ضرایب همبستگی دارای کارایی می‌باشد.
نتیجه‌گیری: مدیران جنگل می‌توانند با به‌کارگیری این سیستم در صورت در دسترس نبودن سایر متغیرها میزان احتمال وقوع آتش‌سوزی را از نظر اقلیمی با استفاده از ترتیب اهمیت هر یک از متغیرهای اقلیمی پیش‌بینی کنند و به درجه‌بندی خطر در مناطق مختلف استان گلستان بپردازند.
واژه‌های کلیدی: آزمون همبستگی، استان گلستان، آب‌وهوا، سامانه هشدار آتش‌سوزی، شاخص اقلیمی آتش‌سوزی جنگل کانادا

کلیدواژه‌ها


عنوان مقاله [English]

Identifying the most effective input climate variables of Canadian Forest Fire Weather index system

نویسندگان [English]

  • Mohammad Amin Eshaghi 1
  • Shaban Shataee 2
  • Kalil Ghorbani 3
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Professor of Forestry., Dept. of Forestry, Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources
3 3Associate Professor of Water Engineering., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Abstract
Background and objectives: Early warning systems in natural areas are one of the ways to prevent and manage fires. Many factors that affect fire occurrence can be divided into two categories climatic factors and human factors. Among the most important climatic factors; increasing the temperature, decreasing the rainfall, decreasing the humidity and increasing the wind speed can be mentioned. Thus,
forest fire risk assessment and early warning systems have become an important component of land management in recent decades. The Canadian Forest Fire Danger Rating System is one of the most important early forest fire warning systems in the world. The Fire Weather Index subsystem provides relative numerical ratings of various aspects of wildfire potential based on four weather observations. The purpose of this study is to identify the most effective input variables of the system in predicting the probability of forest fire in Golestan Province.

Materials and methods: In order to estimate the Canadian Forest Fire Weather Index System, the input variables to the system include four climatic variables: daily observations of maximum temperature, relative humidity, wind speed, and 24-hour precipitation for a period of 21 years (1997-2018) during the fire seasons (April to December). Were collected daily from synoptic and evaporative stations in the province. First, the Canadian Forest Fire Weather Index modeling system was calculated daily during the study period at each station. Then, the correlation test and Multi-Dimensional Scaling analysis between input Weather variables and system output index were performed using Spearman, Pearson, and Kendall correlation coefficients.

Results: The results showed that the variable of maximum daily temperature with a correlation coefficient of 0.911 in the study period has the highest effect on the weather index of Canadian Forest Fires compared to other variables. After temperature, daily relative humidity, daily rainfall and daily wind speed with correlation coefficients -0.89, -0.79, 0.29 have the greatest impact on the output of the system of forest fires in predicting the probability of forest fires in this province. Also, in this study, it was found that Spearman’s correlation coefficient is better than other correlation coefficients.

Conclusion: Forest managers can use this system to predict the likelihood of fire if other variables are not available, using the order of importance of each of the climatic variables and rate the risk in different parts of the province.

Keywords: Correlation test, Golestan province, Weather, Early Warning System, Canadian forest fire weather index

کلیدواژه‌ها [English]

  • Correlation test
  • Golestan province
  • Weather
  • Early Warning System
  • Canadian forest fire weather index
 1.Adab, H., Kasturi, D., and Karim, S. 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards.65: 3. 1723-1743.
2.Barčić, D., Dubravac, T., and Vučetić, M. 2020. Potential hazard of open space fire in black pine stands (Pinus nigra JF Arnold) in regard to Fire severity. South-east European Forestry. 11: 2. 161-168.
3.Bedia, J., Herrera, S., Gutiérrez, J.M., Benali, A., Brands, S., Mota, B., and Moreno, J.M. 2015. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology. 214: 1. 369-379.
4.Camia, A., Bovio, G., Aguado, I., and Stach, N. 1999. Meteorological fire danger indices and remote sensing. Remote Sensing of Large Wildfires.34: 1. 39-59.
5.Cortez, P.G., and Morais, A. 2007. A data mining approach to predict forest fires using meteorological data. In: Proceeding of the 13th Portuguese conference an artificial intelligence. 21: 2. 512-523.
6.Chaei, A. 2000. Fire effects on vegetation changes in the Golestan National Park. MSc. Thesis, University of Mazandaran, 85p. (In Persian)
7.Christensen, R.H.B. 2015. Statistical methodology for sensory discrimination tests and its implementation in sens R. The American Statistician. 62: 1. 22-26.
8.De Groot, W.J., Goldammer, J.G., Keenan, T., Brady, M.A., Lynham, T.J., Justice, C.O., and O'Loughlin, K. 2006. Developing a global early warning system for wildland fire. Forest Ecology and Management. 234: 1. 10-24.
9.Dowdy, A.J., Mills, G.A., Finkele, K., and de Groot, W. 2010. Index sensitivity analysis applied to the Canadian forest fire weather index and the McArthur forest fire danger index. Meteorological Applications. 17: 3. 298-312.
10.Eshaghi, M.A., and Shataee, Sh. 2016. Preparation map of forest fire risk using SVM, RF and MLP algorithms (Case study: Golestan national park. Northeastern Iran. J. of Wood and Forest science and Technology. 23: 4. 133-154. (In Persian)
11.Eskandari, S. 2015. Investigation on the relationship between climate change and fire in the forests of Golestan Province. Forest and Range Protection Research. 13: 1. 1-10. (In Persian)
12.Finney, M.A. 2005. The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management. 211: 1. 97-108.
13.Fogariti, L., and Catchpole, P. 1998. Adoption vs. adaptation: lessons from applying the Canadian forest fire danger rating system in New Zealand. 14th international conferences on Fire and Forest Meteorology. 1: 10. 11-14.
14.Galanter, M., Levy, H., and Carmichael, G.R. 2000. Impacts of biomass burning on tropospheric CO. NO x, and O3. J. of Geophysical Research: Atmospheres. 105: 5. 6633-6653.
15.Hamadeh, N., Karouni, A., Daya, B., and Chauvet, P. 2017. Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon and Mediterranean. Assessment versus prevalent meteorological indices. Case Studies in Fire Safety. 7: 8-22.
16.Hamidi, N., Esmaeily, A., and Faramarzi, H. 2020. Analysis of the potential fire hazard scenarios using GIS and RS. A case study of Lordegan forests. Emergency management.9: 1. 17-27. (In Persian)
17.Holsten, A., Dominic, A.R., Costa, L., and Kropp, J.P. 2013. Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management.287: 1. 123-131.
18.House, J.I., Colin Prentice, I., and Le Quere, C. 2002. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biology. 8: 11. 1047-1052.
19.Johnston, L.M., Wang, X., Erni, S., Taylor, S.W., McFayden, C.B., Oliver, J.A., and Flannigan, M.D. 2020. Wildland fire risk research in Canada. Environmental Reviews. 28: 2. 164-186.
20.Pérez Porras, F.J., Triviño Tarradas, P., Cima Rodríguez, C., Meroño de Larriva, J.E., García Ferrer, A., and Mesas-Carrascosa, F.J. 2021. Machine learning methods and synthetic data generation to predict large wildfires. Sensors. 21: 11. 3694-3713
21.Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 29: 1. 1-27.
22.Lawson, B.D., and Armitage, O.B. 2008. Weather guide for the Canadian forest fire danger rating system. Canadian forest Service. Northern Forestry Centre. 1: 1. 1-84.
23.Madjnoonian, H., Zehzad, B., and Kiabi, B. 1999. Golestan National Park (Biosphere Reserve) – Department of the Environment. 130p. (In Persian)
24.Nikolopoulos, E.I., Destro, E., Bhuiyan, M.A.E., Borga, M., and Anagnostou, E.N. 2018. Evaluation of predictive models for post-fire debris flow occurrence in the western United States. Natural Hazards and Earth System Sciences. 18: 9. 2331-2343.
25.Nyatondo, U.N. 2010. Fire spread modeling in Majella national park, Italy. MSc thesis. International institute for geo information science and Earth observation, Enschede. 91p.
26.Papagiannaki, K., Giannaros, T.M., Lykoudis, S., Kotroni, V., and Lagouvardos, K. 2020. Weather-related thresholds for wildfire danger in a Mediterranean region. The case of Greece. Agricultural and Forest Meteorology. 291: 1. 76-108.
27.Parsakhoo, A., Eshaghi, M.A.,and Joybari, S. 2016. Design and evaluation of helicopter landing variants for firefighting in Golestan national park. Northeast of Iran.Caspian J. of Environmental Sciences. 14: 4. 321-329.
28.Pourtaghi, Z.S., Pourghasemi, H.R., and Rossi, M. 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences. 73: 4. 1515-1533.
29.Shahani, A.R., and Rahai A. 2020. Causes, effects, challenges and strategies to combat forest and rangeland fires. Research center of the Islamic consultative assembly. 17288: 250. 13-14. (In Persian)
30.Rodrigues, M., Alcasena, F., and Vega-García, C. 2019. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment. 666: 915-927.
31.Rodrigues, M., González-Hidalgo, J.C., Peña-Angulo, D., and Jiménez-Ruano, A. 2019. Identifying wildfire-prone atmospheric circulation weather types on mainland Spain. Agricultural and Forest Meteorology. 264: 92-103.
32.Sabbaghi, H., Ziaiifar, A.M., and Kashaninejad, M. 2019. Design of fuzzy system for sensory evaluation of dried apple slices using infrared radiation. Iranian J. of Biosystems Engineering. 50: 1. 77-89. (In Persian)
33.Sakr, G., Elhajj, E.I.H., Mitri, G. 2011. Efficient forest fire occurrence prediction for developing countries using two weather parameters. Engineering Applications of Artificial Intelligence. 24: 888-894.
34.Salis, M. 2008. Fire behavior simulation in Mediterranean maquis using FARSITE. PhD Doctoral Thesis, Universita' DegliStudi Di Sassari. 95p.
35.Stojanova, D.G., Panov, P.G., Kobler, A.G., Dzeroski, S.G., and Taskova, K. 2006. Learning to predict forest fires with different data mining techniques. Conference on Data Mining and Data Warehouses. 1: 255-258.
36.Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., and van Leeuwen,T.T. 2010. Global fire emissions and
the contribution of deforestation. Savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics. 10: 23. 11707-11735.
37.Van Wagner, C.E., and Forest, P. 1987. Development and structure of the Canadian forest fire weather index system. In Can. For. Serv., Forestry Tech. Rep. 35p.
38.Van Wagner, C.E., and Pickett, T.L. 1985. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33: 18p.
39.Winkler, H., Formenti, P., Esterhuyse, D.J., Swap, R.J., Helas, G., Annegarn, H.J., and Andreae, M.O. 2008. Evidence for large-scale transport of biomass burning aerosols from sun photometry at a remote South African site. Atmospheric Environment. 42: 22. 5569-5578.
40.Zhang, Q.F., and Chen, W.J. 2007. Fire cycle of the Canada's boreal region and its potential response to global change. J. of Forestry Research. 18: 1. 55-61.