شبیه‌سازی بازتاب طیفی و تخمین کلروفیل و رطوبت برگ بنه Pistacia mutica بر اساس مدل PROSPECT4

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه جنگلداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران،

2 استادیار ، گروه جنگلداری ، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران،

3 دانشیار ، گروه جنگلداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

سابقه و هدف: جنگل‌های زاگرس به عنوان وسیع‌ترین زیست‌بوم جنگلی ایران عمدتاً از گونه‌های بلوط و بنه تشکیل یافته است. گونه Pistacia mutica اگر‌چه توانایی سازگاری با شرایط نامطلوب محیطی را دارد، اما مانند سایر گونه‌ها برای استقرار و رویش بهینه، نیازمند شرایط محیطی متناسب با نیاز اکولوژیکی خود است. به دلیل شرایط اقلیمی و شاخه‌زاد بودن، رشد قطری و ارتفاعی در این درختان بطئی است. بنابراین بررسی وضعیت کمی و کیفی جنگل از طریق اندازه‌گیری و پایش مشخصات کمی با نتایج دقیق همراه نخواهد بود. در‌مقابل بررسی ویژگی‌های بیوشیمیایی و بیوفیزیکی برگ و تاج‌پوشش این درختان می‌تواند روش مناسب‌تری برای مطالعه و پایش آن‌ها در اختیار قرار دهد. کلروفیل و رطوبت گیاه، پارامتر‌های مهمی در تعیین وضعیت فیزیولوژیکی، شرایط سلامت و تعیین وضعیت استرس درختان هستند. برآورد این پارامتر‌ها از داده‌های سنجش‌از‌دور و نزدیک‌سنجی با استفاده از مدل‌های انتقال تابشی که براساس قوانین فیزیک و نحوه تعامل امواج با درختان کار می‌کنند، امکان‌پذیر است. مدل PROSPECT برای تخمین مقدار کلروفیل، مقدار آب و ماده خشک برگ در واحد سطح براساس اندازه‌گیری‌های بازتاب طیفی ارائه شده است. در سال‌های اخیر آتش‌سوزی، آفات و بیماری‌ها تغییرات آب و هوایی و خشکسالی به تدریج رشد و کیفیت این گونه را تحت تأثیر قرار داده است. از آنجا که اولین نشانه‌های تنش در درختان، در برگ آن‌ها ظاهر می‌شود، از این‌رو در این تحقیق ضرورت بررسی وضعیت کمی و کیفی این گونه بر‌اساس پارامترهای بیوشیمیایی برگ آن از طریق روش‌های غیر‌مخرب نزدیک‌سنجی مطرح شد.
موادو روش‌ها: 20 درخت بنه به‌طور تصادفی در جنگل کود‌سیاه بخش فلارد استان چهارمحال و بختیاری انتخاب شدند و میزان پارامتر‌های کلروفیل، مقدار آب معادل و مقدار ماده خشک برگ در آزمایشگاه محاسبه شد. بازتاب طیفی نمونه برگ‌ها به وسیله طیف‌سنج SVC HR-1024 اندازه‌گیری شد. اطلاعات حاصل از داده‌های طیف‌سنجی و مقادیر پارامتر‌های بیوفیزیکی و بیوشیمیایی برگ در جعبه ابزار ARTMO وارد شد. سپس از مدل انتقال تابشی PROSPECT4 برای شبیه‌سازی بازتاب طیفی و تخمین رطوبت و کلروفیل برگ گونه Pistacia mutica استفاده شد. از ترکیب شبیه‌سازی‌ها با رگرسیون حداقل مربعات بخشی، عملکرد مدل PROSPECT4 در تخمین میزان کلروفیل و رطوبت برگ این گونه ارزیابی شد.
یافته‌ها: به‌منظور ارزیابی مدل در تخمین میزان کلروفیل و رطوبت برگ از شاخص‌های R2 و RMSE بین مقادیر اندازه‌گیری شده و برآورد شده استفاده شد. نتایج نشان داد که مدل PROSPECT4 در ترکیب با رگرسیون PLS دقت مناسبی در تخمین رطوبت (0028/0= ,RMSE73/0=R2) و کلروفیل برگ (61/2=,RMSE72/0=R2) دارد. نتایج آزمون t جفتی از شاخص‌های طیفی نشان داد که شاخص‌های ARI، ARI2، DWSI، NDWI و p550 تفاوت معنی‌داری بین طیف اندازه‌گیری شده و شبیه‌سازی شده نداشتند.
نتیجه‌گیری: براساس نتایج این تحقیق، ترکیب مدل‌های انتقال تابشی با روش‌های رگرسیونی مانند PLS قدرت زیادی در پیش‌بینی پارامتر‌های گیاهی دارند. بکار‌گیری سایر مدل‌های انتقال تابشی با چندین گونه گیاهی با دامنه مقادیر بیشتری از پارامترها، همچنین تکنیک‌هایی مانند اطلاعات قبلی، راه‌حل‌های چندگانه و سایر روش‌های رگرسیونی در شبیه‌سازی بازتاب طیفی و تخمین پارامتر‌های معرف وضعیت کیفی جنگل قابلیت بررسی در جنگل‌های زاگرس را داشته و می‌تواند در سطوح گسترده از طریق داده‌های ماهواره‌ای بررسی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spectral reflectance simulation and estimation of chlorophyll and water content of Pistacia mutica leaf based on PROSPECT4 model

نویسندگان [English]

  • Narges Poorghasemi 1
  • Mozhgan Abbasi 2
  • Ali Jafari 3
  • Hamid Reza Riyahi Bakhtyari 2
1 Department of Forest science. Faculty of Natural Resources and Earth Sciences, Shahrekord University
2 Department of Forest Science, faculty of Natural Resources and Earth Sciences, Shahrekord University
3 Department of Forest science Faculty of Natural Resources and Earth Sciences, Shahrekord University
چکیده [English]

Background and objectives: Zagros forests, as the largest forest ecosystem in Iran, are mainly composed of oak and pistachio species. Although Pistacia mutica has the ability to adapt to adverse environmental conditions, for optimal establishment and growth, like other tree species, it needs environmental conditions appropriate with its ecological needs. Diameter and height growth in these trees are slow due to climatic conditions, so the study of the quantitative and qualitative condition of the forest by measuring and monitoring quantitative characteristics will not be accompanied by accurate results. In contrast, studying the biochemical and biophysical properties of the leaves and canopy of these trees can provide a more appropriate way for studying and monitoring them. Plant chlorophyll and moisture are important parameters in determining the physiological status, health condition, and stress status of trees. It is possible to estimate these parameters from remote sensing and proximity data using radiation transfer models that work according to the physics laws and how electromagnetic radiation interacts with trees. The PROSPECT4 model is one of the newest models proposed to estimate the amount of chlorophyll, water content, and leaf dry matter per unit area based on spectral reflectance measurements. In recent years, fires, pests and diseases, climate change, and drought have gradually affected the growth and quality of pistachio species. Since the first signs of stress in trees appear in their leaves, in this study, the need to investigate the quantitative and qualitative status of this species based on the biochemical parameters of its leaves through non-destructive methods of proximity was considered.
Materials and methods: 20 Pistacia trees were randomly selected in the Kood Siyah forest of Felard section of Chaharmahal va Bakhtiari province. The amount of chlorophyll parameters, equivalent water thickness and leaf dry matter were calculated in the laboratory. Spectral reflectance of leaf samples was measured by SVC HR-1024 spectrometer. Spectral data and values of leaf biophysical and biochemical parameters were entered in the ARTMO toolbox. Then, PROSPECT4 radiation transfer model was used to simulate spectral reflection and estimate water and leaf chlorophyll of Pistacia mutica. Combining the simulations with least squares regression, the performance of PROSPECT4 model in estimating chlorophyll content and leaf water of this species was evaluated.
Results: In order to evaluate the model in estimating chlorophyll content and leaf water content, R2 and RMSE indices were used between the measured and estimated values. The results showed that the PROSPECT4 model in combination with the PLS model has good accuracy in estimating leaf water content (R2 = 0.73, RMSE = 0.0028) and leaf chlorophyll (R2 = 0.72, RMSE = 2.61). The results of paired T-test of spectral indices showed that ARI,, ARI2,, DWSI,,NDWI and p550 indices were not significantly different between the measured and simulated reflectance.
Conclusion: Based on the results of this study, the combination of radiation transfer model with regression methods such as PLS has great power in predicting tree parameters. Estimation of forest quality parameters in a vast area of Zagros forests using satellite data along with other radiation transfer models using several tree species and a range of parameters, as well as techniques such as ancillary information, multiple solutions, and other regression methods of simulating spectral reflectance can be performed.

کلیدواژه‌ها [English]

  • Radiative transfer models
  • Leaf chlorophyll
  • ARTMO toolbox
  • Leaf spectral reflectance
  • Zagros forests
1.Abbasi, M. 2009. Investigation of the spectral signature of forest species leaf: Fagus orientalis, Quercuse castaneifolia, Carpinus betulus, Alnus subcordata, Parotia persica using field spectroradiometry, PhD thesis, TehranUniv. 135p. (In Persian)
2.Ali, A.M., Darvishzadeh, R., Skimore, A.K., Duren, I.V., Heiden, U., and Heurich, M. 2016. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. International J. of Applied Earth Observation and Geoinformation. 45: 66-76.
3.Apan‌, A.‌, Held‌, A.‌, Phinn,‌ S.,‌ and Markley‌, J.‌ 2003. Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease, in: Proc. of the Spatial Sciences Conference, Canberra. 13p.
4.Arfa, J., Ben Katlane‌, R.,‌ Berges,‌ J.C.‌, Lavie,‌ E.,‌ Beltrando,‌ G.,‌ Fassetta‌, G.A.,‌ and Zargouni, F. 2017. Vegetation changes detection in Gabes Oases using EO1/Hyperion data. Euro-Mediterranean Conference for Environmental Integration. pp. 1779-1781.
5.Arnon, D.T. 1949. Copper enzymes in isolated Chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology.
24: 1-15.
6.Aslani Afousi, Z. 2011. Spectral characterization of dominant tree species leaves in Zagros forests using terrestrial spectroscopy. Master thesis, Shahrekord Univ. 93p. (In Persian)
7.Asner, G.P., and Martin, R.E. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sensing of Environment. 112: 3958-3970.
8.Atzberger, C. 2010. Inverting the PROSAIL canopy reflectance model using neuralnets trained on streamlined databases. J. Spectral Imagin. 1: 1-13.
9.Atzberger,‌ C.,‌ Darvishzadeh, R., Immitzer,‌ M.,‌ Schlerf,‌ M.,‌ Skidmore‌, A.‌, and Maire‌, G.L.‌ 2015. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International J. of Applied Earth Observation and Geoinformation. 43: 19-31.
10.Corona,‌ P.,‌ Fattorini,‌ L.,‌ Franceschi,‌ S.,‌ Chirici,‌ G.,‌ Maselli‌, F.,‌ and Secondi,‌ L. 2014. Mapping by spatial predictors exploiting remotely sensed and ground data: a comparative design-based perspective. Remote Sensing of Environment. 152: 29-37.
11.Danner,‌ M.,‌ Berger,‌ K.,‌ Wocher,‌ M.,‌ Mauser,‌ W.,‌ and Hank,‌ T.‌ 2019. Fitted PROSAIL parameterization of leaf inclinations, water content and brown pigment content for winter wheat
and maize canopies. Remote Sensing. 11: 10. 1150.
12.Danson,‌ F.M.,‌ and Bowyer‌, P.‌ 2004. Estimation live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment.
92: 309-321.
13.Dashti Ahangar,‌ A.,‌ Darvishzadeh‌, R.,‌ Matkan‌, A.A., and Hajeb, M. 2011. Extraction of rice canopy chlorophyll content using an inversion of canopy radiative transfer model and ALOS images. Iranian Remote Sensing and GIS. 2: 71-86. (In Persian)
14.Fava‌, F.,‌ Colombo,‌ R.,‌ Bocchi,‌ S.‌, Meroni,‌ M.‌, Sitzia,‌ M.‌, Fois,‌ N.‌, and Zucca,‌ C.‌ 2009. Identification of hyperspectral vegetation indices for mediterranean pasture characterization. International J. of Applied Earth and Geoinformation. 11: 233-243.
15.Feret‌, J.B.‌, François,‌ Ch.‌, Asner‌, G.P.,‌ Gitelson,‌ A.A.‌, Martin,‌ R.E.,‌ Bidel,‌ L.P.R.,‌ Ustin,‌ S.L.,‌ Maire‌, G.L.,‌ and Jacquemoud,‌ S.‌ 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment. 112: 3030-3043.
16.Feret‌, J-B.‌, Francois,‌ Ch.‌, Gitelson,‌ A., Asner,‌ G.P.,‌ Barry‌, K.M.,‌ Panigada,‌ C., Richardson,‌ A.D.,‌ and Jacquemoud,‌ S.‌ 2011. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sensing of Environment. 115: 2742-2750.
17.Feret,‌ J.B.‌, Gitelson‌, A.A.,‌ Noble‌, S.D.,‌ and Jacquemoud,‌ S.‌ 2017. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sensing of Environment.
193: 204-215.
18.Fernandes‌, A.M.‌ 2019. De novo shoot organogenesis and leaf development in Passiflora edulis Sims: a morpho-physiological and molecular approach. Master thesis, Federal de Viçosa Univ. 137p.
19.Gara‌, T.W.‌, Darvishzadeh,‌ R.,‌ Skidmore,‌ A.K.‌, Wang‌, T.‌, and Heurich,‌ M.‌ 2019. Evaluating the performance of PROSPECT in the retrieval of leaf traits across canopy throughout the growing season. International J. of Applied
Earth Observation and Geoinformation. 83: 1-15.
20.Gitelson,‌ A.A.‌, Merzlyak‌, M.N.‌, and Chivkunova,‌ O.B.‌ 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and photobiology.74: 38-45.
21.Hansen‌, P.M.,‌ and Schjoerring,‌ J.K. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment. 86: 542-553.
22.Hosseinzadeh‌, J., and Pourhashemi, M. 2015. An investigation on the relationship between crown indices and the severity of oak forests decline in Ilam. Iranian J. of Forestry. 1: 57-66.
(In Persian)
23.Hu‌, B.‌, Miller,‌ J.R.‌, Chen,‌ J.M.,‌ and Hollinger,‌ A.‌ 2004. Retrieval of the canopy leaf area index in the BOREAS flux tower sites using linear spectral mixture analysis. Remote Sensing of Environment. 89: 176-188.
24.Jacquemoud‌, S.,‌ and Baret‌, F.‌ 1990. Prospect-a model of leaf optical-properties spectra. Remote Sensing of Environment. 34: 75-91.
25.Jacquemoud,‌ S.,‌ Verhoef‌, W.,‌ Baret,‌ F.,‌ Bacour‌, C.‌, Zarco-Tejada,‌ P.‌, Asner‌, G.P.‌, François,‌ Ch.‌, and Ustin,‌ S.L.‌ 2009. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment. 113: 56-66.
26.Jafari, M. 2012. Climate and environmental impacts on beech and oak wood production in the Hyrcanian forests. Iranian J. of Wood and Paper Science Research. 27: 386-408. (In Persian)
27.Jay, S.‌, Bendoula, R.‌, Hadoux, X.‌, Feret, J.B., and Gorrette, N. 2016. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sensing of Environment.177: 220-236.
28.Kalacska‌, M.,‌ Calvo-Alvarado,‌ J.C.‌, and Sanchez-Azofelfa‌, G.A.‌ 2005. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiology. 25: 733-744.
29.Malenovsky,‌ Z.‌, Albrechtova,‌ J.‌, Lhotakova,‌ Z.,‌ Zurita-milla,‌ R.‌, Clevers‌, J.G.P.W.,‌ Schaepman‌, M.E.‌, and Cudlin, P.‌ 2006. Applicability of the PROSPECT model for Norway spruce needles. International J. of Remote Sensing. 27: 5315-5340.
30.Mirzaie,‌ M.‌, Darvishzadeh‌, R.‌, Shakiba, A.,‌ Matkan‌, A.A.,‌ Atzberger,‌ C.‌, and Skidmore,‌ A. 2014. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements. International J. of Applied Earth Observation and Geoinformation. 26: 1-11.
31.Mirzaei,‌ M‌., Abbasi,‌ M., Marofi‌, P.‌, Solgi,‌ A.‌ and Karimi, R. 2018. Spectral discrimination of important orchard species using hyperspectral indices and artificial intelligence approaches.RS & GIS Natural Resources. 9: 76-92. (In Persian)
32.Naseri Karimvand, S., Poursartip, L., Moradi, M., and Susani, J. 2017. Comparing the impact of climate variables on healthy and declined stands of Persian oak (Quercus brantii Lindl.) in the “Khorram Abad”. Iranian J. of Wood and Paper Industries. 7: 591-600. (In Persian)
33.Penuelas‌, J.,‌ Pinol‌, J.,‌ Ogaya,‌ R., and Filella‌, I.‌ 1997. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International J. of Remote Sensing.18: 2869-2875.
34.Rivera,‌ J.P.‌, Verrelst,‌ J.‌, Delegido,‌ J.‌, Veroustraete‌, F.‌, and Moreno,‌ J.‌ 2014. On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sensing.
6: 4927-4951.
35.Sinha‌, S.K.,‌ Padalia‌, H.‌, Dasgupta, A.‌, Verrelst,‌ J.‌, and Rivera,‌ J.P.‌ 2020. Estimation of leaf area index using PROSAIL based LUT inversion, MLRAGPR and empirical models: Case study of tropical deciduous forest plantation, North India. International J. of Applied Earth Observation and Geoinformation. 86: 102027.
36.Talebi,‌ M.,‌ Saqeb Talebi,‌ Kh‌., and Jahanbazi Gojani‌, H. 2006. Site demands and some quantitative and qualitative characteristics of Persian Oak (Quercus brantii Lindl.) in Chaharmahal & Bakhtiari province (western Iran). Iranian J. of Forest and Poplar Research. 14: 67-79. (In Persian)
37.Thenkabail‌, P.S.‌, Smith,‌ R.B.,‌ and De Pauw‌, E.‌ 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment. 71: 158-182.
38.Verrelst‌, J.,‌ Romijn‌, E.,‌ and Kooistra‌, L. 2012. Mapping vegetation Density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sensing. 4: 2866-2889.
39.Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G., Moreno, J. 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS J. of Photogrammetry and Remote Sensing. 108: 273-290.
40.Verrelst‌, J.‌, Dethier,‌ S.,‌ Rivera‌, J.P.,‌ Munoz-Mari‌, J.‌, Camps-Valls‌, G.,‌ and Moreno‌, J. 2016. Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geoscience and Remote Sensing Letters. 13: 1012-1016.
41.Wang‌, Q.,‌ and Li‌, P.‌ 2011. Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements. Hydrological Processes. 26: 1230-1241.
42.Yu,‌ K.‌, Li,‌ F.,‌ Gnyp,‌ M.L.,‌ Miao,‌ Y.‌, Bareth,‌ G.‌, and Chen,‌ X.‌ 2013. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogrammetry and Remote Sensing. 78: 102-115.
43.Zarco-Tejada, P.J., Hornero, A., Beck, P.S.A., Kattenborn‌, T.,‌ Kempeneers, P., and Hernández-Clemente, R. 2019. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sensing of Environment. 223: 320-335.