کارایی شبکه عصبی مصنوعی بهینه در مدلسازی کربن آلی خاک مبتنی بر داده های میدانی و تصاویر Sentinel-2 در ارسباران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ، گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران،

2 دانشیار، گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران،

3 استادیار، گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

سابقه و هدف: خاک بزرگ‌ترین منبع ذخیره کربن موجود در بوم‌سازگان‌های زمینی هستند که بیشترین سهم از کل ذخایر جهانی ‏کربن زمینی را در خود جای دادند. نقشه‌برداری دقیق اطلاعات توزیع مکانی ذخیره کربن آلی خاک (SOC) یک پیشنیاز کلیدی جهت مدیریت منابع خاک و حفاظت از محیط زیست است. توسعه سریع علم سنجش از دور و استفاده از تصاویر ماهواره‌ای امکان نظارت بر ذخیره SOC در مقیاس بزرگ را فراهم می‌کند. امکان برآورد SOC یکی از موضوعات پیش روی پژوهشگران بوده است که در برخی موارد از شبکه عصبی مصنوعی برای این موضوع استفاده شده است هرچند تعیین مقادیر بهینه مؤلفه‌های موثر در آن دشوار است. در برخی مطالعات از الگوریتم ژنتیک برای بهینه‌سازی وزن‌های اولیه شبکه عصبی و بهبود پیش‌بینی متغیرهای خروجی استفاده ‌شده‌ است. اگرچه کارایی این روش در برآورد SOC با داده‌های سنجش از دور کمتر مورد‌ بررسی قرار‌گرفته است. در این پژوهش اثر الگوریتم ژنتیک بر بهبود عملکرد شبکه عصبی مصنوعی در پیش‌بینی SOCبا استفاده از تصاویر ماهواره Sentinel-2 در ناحیه رویشی ارسباران مورد‌ بررسی قرار‌گرفته است.
مواد و روش‌ها: برای این منظور نمونه‌برداری از خاک با استفاده از روش نمونه‌برداری تصادفی طبقه‌بندی شده بر اساس انواع کاربری اراضی در 46 نقطه و در عمق صفرتا ۱۵ سانتی‌متر انجام شد. SOC با استفاده از روش والکلی بلاک اندازه‌گیری شد. برای برازش مدل بین کربن آلی اندازه‌گیری شده در آزمایشگاه با ۹ شاخص طیفی و ۳ باند تصویر ماهواره‌ای که به طور مستقیم وارد مدلسازی شدند، از دو روش شبکه عصبی مصنوعی و شبکه عصبی مصنوعی بهینه ‌شده با الگوریتم ژنتیک استفاده گردید. برای ارزیابی کارایی مدل‌ها از روش اعتبارسنجی متقابل (Cross Validation) استفاده شد. درنهایت مدل‌های به‌دست‌آمده با شاخص‌های آماری جذر میانگین مربعات خطا (RMSE)، نسبت عملکرد به انحراف (RPD)، ضریب همبستگی اسپیرمن (r) ، ضریب تبیین (R2) و همچنین آزمون تی جفتی مورد ارزیابی قرار گرفتند.
یافتهها: نتایج نشان داد SOC برآوردی با شبکه عصبی مصنوعی بهینه‌ شده با الگوریتم ژنتیک (%07/1=RMSE، % 89/1=RPD، 76/0=R2) دقت بیشتری نسبت به نتایج شبکه عصبی مصنوعی (% 51/1=RMSE، % 34/1=RPD، 58/0=R2) داشت. همچنین بهبود ضریب همبستگی اسپیرمن برای SOC واقعی و برآورد شده با شبکه عصبی مصنوعی بهینه‌ شده (87/0=r) و SOC برآورد شده با شبکه عصبی مصنوعی (76/0=r) مشاهده گردید. SOC واقعی با SOC برآوردی با شبکه عصبی مصنوعی بهینه‌ اختلاف معنی داری نداشت (21/0=p-value) ولی با SOC برآوردی با شبکه عصبی مصنوعی متفاوت بود (02/0=p-value). علاوه‌ بر این، نتایج نشان داد که شاخص TSAVI بیشترین ضریب همبستگی اسپیرمن (565/0) و شاخصBI2 کمترین ضریب همبستگی اسپیرمن (196/0) را با کربن آلی خاک‌ دارند.
نتیجه‌گیری: به‌طورکلی، نتیجه‌گیری شد که استفاده از الگوریتم ژنتیک در انتخاب مؤلفه‌های بهینه شبکه عصبی مصنوعی منجر به بهبود عملکرد این روش مدل‌سازی در برآورد نقطه‌ای SOC با استفاده از تصاویر ماهواره Sentinel-2 در منطقه موردمطالعه شده است. همچنین با توجه به نتایج بدست آمده، کارایی تصاویر ماهواره Sentinel-2 در برآورد SOC در منطقه مورد مطالعه تأیید شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of optimized artificial neural network in soil organic carbon modeling based on in-situ measurements and Sentinel-2 images in Arasbaran

نویسندگان [English]

  • Mohsen Lotfi 1
  • Yousef Erfanifard 2
  • Farshad AmirAslani 2
  • Ali Keshavarzi 3
1 University of Tehran
2 University of Tehran
3 University of Tehran
چکیده [English]

Background and Objectives: Soils are the largest carbon pool in terrestrial ecosystems, which account for the greatest amount of the ‎global total terrestrial carbon stocks‏.‏‎ Accurate mapping of Soil Organic Carbon (SOC) spatial distribution ‎is a key assumption for soil resource management and environmental protection.‎‏ ‏The rapid ‎development of remote sensing and application of satellite images provide an excellent opportunity to monitor large-scale SOC storage.‎ Estimating SOC is one of the research topics that artificial neural networks are applied for this purpose in some studies, although parameter optimization is difficult. In previous studies, genetic algorithms have been used to optimize the artificial neural network initial weights and improve the prediction of the output variables. However, the effectiveness of this method in estimating the SOC by remote sensing has been less studied. In this study, the effect of genetic algorithm on artificial neural network training to predict SOC on Sentinel-2 satellite images in Arasbaran vegetation zone was investigated.
Materials and methods: For this purpose, soil sampling was performed using stratified sampling method at 46 points at a depth of 0 to 15 cm. SOC was measured by Walky-Black titration method. In order to fit the model between the measured organic carbon in the laboratory, 9 spectral indices and three bands of satellite image, and two methods were used namely, artificial neural network and artificial neural network optimized by genetic algorithm. Cross validation was used to evaluate the models efficiently. Finally, the precision of the obtained models was evaluated with statistical indices of Root Mean Square Error (RMSE), Ratio of Performance to Deviation (RPD), Spearman's correlation coefficient (r), coefficient of determination (R2), and paired sample t-test.
Results: The results showed that the precision of SOC estimated by artificial neural network optimized by genetic algorithm (RMSE = 1.07%, RPD = 1.89%, R2 = 0.76) was higher than artificial neural network results (RMSE =1.51%, RPD = 1.34%, R2 = 0.58). Also Spearman correlation coefficient for SOC estimated with optimized artificial neural network (r = 0.87) was higher compared to estimated SOC with artificial neural network (r = 0.76). Observed SOC was not significantly different from SOC estimated by optimized artificial neural network (p-value=0.21) while it was different from estimated SOC by artificial neural network (p-value=0.02). In addition, the results showed that TSAVI index had the highest Spearman correlation coefficient (0.565), and BI2 index had the lowest Spearman correlation coefficient (0.196) with soil organic carbon.
Conclusion: Generally, it was concluded that the use of genetic algorithm in the selection of artificial neural network parameters improved the performance of this modeling method in estimating soil organic carbon on Sentinel-2 satellite images in the study area. Also the performance of Sentinel-2 satellite images in estimating soil organic carbon in the study area was validated.

کلیدواژه‌ها [English]

  • Genetic algorithm
  • Artificial neural networks
  • Soil organic carbon
  • Sentinel-2 satellite images
1.Adhikari, K., and Hartemink, A.E. 2015. Digital mapping of topsoil carbon content and ‎changes in the Driftless area of Wisconsin, USA. Soil Science Society of America J. 79: ‎‎1. 155-164.‎
2.Amanuel, W., Yimer, F., and Karltun, E. 2018. Soil organic carbon variation in relation to ‎land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia. J. of ‎Ecology and Environment. 42: 1. 16-27. ‎
3.Baret, F., and Guyot, G. 1991. Potentials and limits of vegetation indices for LAI and ‎APAR assessment. Remote Sensing of Environment. 35: 2. 161-173. ‎
4.Browne, M.W. 2000. Cross-validation methods. J of mathematical psychology. 44: 1. 108-32.5.Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S., and Casa, R. 2016. ‎Evaluation of the potential of the current and forthcoming multispectral and ‎hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of ‎Environment. 179: 54-65.‎
6.Chang, C.W., Laird, D.A., Mausbach, M.J., and Hurburgh, J. 2001. Near-infrared ‎reflectance spectroscopy - principal components regression analyses of soil properties. ‎Soil Science Society of America J. 65: 2. 480-490.‎
‎7.Chen, F., Kissel, D.E., West, LT., and Adkins, W. 2000. Field-scale mapping of surface soil organic ‎carbon using remotely sensed imagery. Soil Science Society of America J. 64: 2. 746-753.‎
8.Chiroma, H., Noor, A.S.M., Abdulkareem, S., Abubakar, A.I., Hermawan, A., Qin, H., ‎Hamza, M.F., and Herawan, T. 2017. Neural networks optimization through genetic ‎algorithm searches: A review. J. of Applied Mathematics and Information Sciences. 11: ‎‎6. 1543-1564.‎
9.Cohen, W.B., and Spies, T.A. 1992. Estimating structural attributes of Douglas-fir/western ‎hemlock forest stands from Landsat and SPOT imagery. Remote Sensing of Environment. ‎‎ 41: 1. 1-17. ‎
10.Crippen, R.E. 1990. Calculating the vegetation index faster. Remote Sensing of ‎Environment. 34: 1. 71-73. ‎
11.Dengiz, O., Sağlam, M., and Türkmen, F. 2015. Effects of soil types and land use land ‎cover on soil organic carbon density at Madendere watershed. Eurasian J. of Soil ‎Science. 4: 2. 82-87.‎
12.Dreyfus, G. 2005. Neural networks: Methodology and applications. Springer-Verlag. ‎Berlin. Germany. 322p. ‎
13.Elachi, C., and Zyl, J. 2006. Introduction to the physics and techniques of remote sensing. ‎John Wiley and Sons. New Jersey. U.S.A. 513p. ‎
14.Escadafal, R. 1989. Remote sensing of arid soil surface color with Landsat thematic ‎mapper. Advances in Space Research. 9: 1. 159-163. ‎
15.Eswaran, H., Van Den Berg, E., and Reich, P. 1993. Organic carbon in soils of the World. ‎Soil Science Society of America J. 57: 1. 192-194.‎
16.Fagih, H. 2011. Evaluation of artificial neural network application and optimization using ‎genetic algorithm in estimation of monthly precipitation data (case study: Kurdistan ‎region). J. of Water and Soil Science. 14: 51. 27-44. (In Persian) ‎
17.Furtuna, R., Curteanu, S., and Leon, F. 2011. An elitist non-dominated sorting genetic ‎algorithm enhanced with a neural network applied to the multi-objective optimization of ‎a polysiloxane synthesis process. Engineering Applications of Artificial Intelligence. 24: ‎‎5. 772-785.
18.Gholizadeh, A., Žižala, D., Saberioon, M., and Borůvka, L. 2018. Soil organic carbon and ‎texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. ‎Remote Sensing of Environment. 218: 89-103. ‎
19.Goldberg, D.E., and Holland, J.H.1988. Genetic algorithms and machine learning. ‎Machine Learning. 3: 2. 95-99.‎
20.Harpham, C., Dawson, C.W.,and Brown, M.R. 2004. A review of genetic algorithms ‎applied to training radial basis function networks. Neural Computing and Applications. ‎‎ 13: 3. 193-201.‎
21.Hejazi, A. 2009. An analysis on the phytogeomorphological potential of Arasbaran ‎biosphere storage. J. of Geography and Planning. 13: 33-39.(In Persian)‎
22.Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., and Ferreira, L.G. 2002. ‎Overview of the radiometric and biophysical performance of the MODIS vegetation ‎indices. Remote Sensing of Environment. 83: 2. 195-213.‎
23.Jin, X., Song, K., Du, J., Liu, H., and Wen, Z. 2017. Comparison of different satellite ‎bands and vegetation indices for estimation of soil organic matter based on simulated ‎spectral configuration. Agricultural and Forest Meteorology. 245: 57-71.‎
24.Karunaratne, S.B., Bishop, T.F.A., Baldock, J.A., and Odeh, I.O.A. 2014. Catchment ‎scale mapping of measurable soil organic carbon fractions. Geoderma. 220: 14-23.‎
25.Kumar, S., Lal, R., and Liu, D. 2012.A geographically weighted regression kriging ‎approach for mapping soil organic carbon stock. Geoderma.190: 627-634.‎
26.Kumar, S., Lal, R., Liu, D., and Rafiq, R. 2013. Estimating the spatial distribution of ‎organic carbon density for the soils of Ohio, USA. J. of Geographical Sciences. 23: 2. ‎‎280-296. ‎
27.Liu, Z., Liu, A., Wang, C., and Niu, Z. 2004. Evolving neural network using real coded ‎genetic algorithm (GA)
for multispectral image classification. Future Generation ‎Computer Systems. 20: 7. 1119-1129.‎
28.Martin, M.P., Wattenbach, M.,Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., and ‎Arrouays, D.2011. Spatial distribution of soil organic carbon stocks in France. ‎Biogeosciences. 8: 5. 1053-1065. ‎
29.McBratney, A.B., Mendonça Santos, M.L., and Minasny, B. 2003. On digital soil ‎mapping. Geoderma. 117: 2. 3-52. ‎
30.Meersmans, J., De Ridder, F., Canters, F., De Baets, S., and Van Molle, M. 2008. A ‎multiple regression approach to assess the spatial distribution of Soil Organic Carbon ‎‎(SOC) at the regional scale (Flanders, Belgium). Geoderma. 143: 2. 1-13. ‎
31.Pouget, M., Madeira, J., Lefloch, E.,and Kamal, S. 1990. Caracteristiques spectrales des ‎surfaces sableuses de la region cotiere nord-ouest de l’Egypte: application aux donnees ‎satellitaires SPOT. J. De teledetection. 12: 27-39.‎
32.Rasuly, A., Naghdifar, R., and Rasoli, M. 2010. Detecting of Arasbaran forest changes ‎applying image processing procedures and GIS techniques. Procedia Environmental ‎Sciences.2: 454-464. (In Persian)‎‎
33.Rezaei, H., Jsfarzadeh, A.A., Alijanpour, A., Shahbazi, F., and Valizadeh Kamran, K. 2016. Genetically evolution of Arasbaran forests soils along altitudinal transects of Kaleybar Chai Sofla Sub-Basin. Iranian J. of Water
and Soil Science. 26: 1. 151-166.‎ (In Persian)‎ 
34.Rouse, J., Haas, J.R., Schell, J.,and Deering, D. 1974. Monitoring vegetation systems in ‎the great plains with ERTS. Proceedings of the 3rd ERTS Symposium. 1: 309-317. ‎
‎35.Rumpel, C., Amiraslani, F., Koutika, L.S., Smith, P., Whitehead, D., and Wollenberg, E. ‎‎2018. Put more carbon in soils to meet Paris climate pledges. Nature. 564: 32-34.‎
‎36.Sasanifar, S., Alijanpor, A., Banjshafi, A., Eshagirad, J., and Molai, M. 2018. The impact of ‎conservation-based management on the physical and chemical properties of soil in ‎Arasbaran forests. Iranian J. of Forest and Poplar Research. 26: 1. 104-117.‎ (In Persian)‎
37.Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring ‎vegetation. Remote Sensing of Environment. 8: 2. 127-150. ‎
38.Walkley, A.J., and Black, I. 1934. An examination of the Degtjareff method for ‎determining soil organic matter and a proposed modification of the chromic acid titration ‎method. Soil Science.37: 29-38. ‎
39.Wang, C., Cui, Y., Ma, Z., Guo, Y., Wang, Q., Xiu, Y., Xiao, R., and Zhang, M. 2019. ‎Simulating spatial variation of soil carbon content in the Yellow River Delta: ‎Comparative analysis of two artificial neural network models. Wetlands. 13: 29-38.‎
40.Were, K., Bui, D.T., Dick, Ø.B., and Singh, B.R. 2015. A comparative assessment of ‎support vector regression, artificial neural networks, and random forests for predicting ‎and mapping soil organic carbon stocks across an Afromontane landscape. Ecological ‎Indicators. 52: 394-403. ‎
41.Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., and ‎Ojima, D. 2004. Modeling gross primary production of temperate deciduous broadleaf ‎forest using satellite images and climate data. Remote Sensing of Environment. 91: 256-270. ‎
42.Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J., and Zhu, B. 2008. Storage, patterns ‎and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology.14: ‎‎7. 1592-1599. ‎
43.Zebardast, L., Jafari, H., Badehyan, Z., and Asheghmoala, M. 2011. Assessment of the trend of changes in land cover of Arasbaran protected area using satellite images of 2002, ‎‎2006 and 2008. Environmental Research J. 1: 1. 23-33. ‎(In Persian)‎
44.Zhang, Y., Guo, L., Chen, Y., Shi, T., Luo, M., Ju, Q., Zhang, H., and Wang, S. 2019. ‎Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the ‎Jianghan plain in Hubei province, China. Remote Sensing. 11: 14. 1683.‎