نوع مقاله : مقاله کامل علمی پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد صنایع خمیر و کاغذ، گروه علوم و مهندسی کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،
2 استادیار ، گروه علوم و مهندسی کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،
3 دانشیار، گروه علوم و مهندسی کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 دانشیار ، گروه علوم و مهندسی کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Background and objective: Bacterial Nano-cellulose (BNC) due to special microscopic structures has a high potential in special used (such as medical and sanitary applications). BNC differs from plant cellulose in its higher purity, crystallinity, and degree of polymerization. The goal of this study was to investigate the production of BNC using Acetobacter xylinum bacteria and its characteristics evaluation.
Materials and methods: In order to obtain BNC, the bacterium was cultured in a liquid culture medium under static and dynamic conditions and the resulting cellulose was washed and purified. Microstructures with field emission scanning electron microscopy (FE-SEM), crystallinity structure by X-ray diffraction (XRD), weight percentage, size and distribution of BNC with energy-dispersive X-ray spectroscopy (EDX), determination of viscosity and molecular weight by dissolving of cellulose in copper(II)-ethylenediamine complex (CED) solution, and BNC yield, using wet and dry samples weighed.
Results:The results showed that yield of BNC static medium is more than BNC dynamic culture medium. Comparison of FE-SEM images showed that the culture method has a significant effect on the morphology structure of the BNCs fibers produced. Comparison of FE-SEM images of two cultivars showed that the morphology of BNC in static is porous and in dynamic is clustered together. The size of nanoparticles is generally below 60 n.m. for both BNC. The results of XRD test showed that the crystallinity of BNCs in the static and dynamic medium was 72.49% and 14.29%, respectively. Also, viscosity of BNCs in the static and dynamic medium was 110.7 centipoise (cP) and 97 cP, respectively.
Conclusion: In general, with respect to characteristics of BNC products and comparison with other studies, we concluded that suitable BNC is produced in this study that with respect to research needed in this field in the country and medical applications and engineering are important.
Background and objective: Bacterial Nano-cellulose (BNC) due to special microscopic structures has a high potential in special used (such as medical and sanitary applications). BNC differs from plant cellulose in its higher purity, crystallinity, and degree of polymerization. The goal of this study was to investigate the production of BNC using Acetobacter xylinum bacteria and its characteristics evaluation.
Materials and methods: In order to obtain BNC, the bacterium was cultured in a liquid culture medium under static and dynamic conditions and the resulting cellulose was washed and purified. Microstructures with field emission scanning electron microscopy (FE-SEM), crystallinity structure by X-ray diffraction (XRD), weight percentage, size and distribution of BNC with energy-dispersive X-ray spectroscopy (EDX), determination of viscosity and molecular weight by dissolving of cellulose in copper(II)-ethylenediamine complex (CED) solution, and BNC yield, using wet and dry samples weighed.
Results:The results showed that yield of BNC static medium is more than BNC dynamic culture medium. Comparison of FE-SEM images showed that the culture method has a significant effect on the morphology structure of the BNCs fibers produced. Comparison of FE-SEM images of two cultivars showed that the morphology of BNC in static is porous and in dynamic is clustered together. The size of nanoparticles is generally below 60 n.m. for both BNC. The results of XRD test showed that the crystallinity of BNCs in the static and dynamic medium was 72.49% and 14.29%, respectively. Also, viscosity of BNCs in the static and dynamic medium was 110.7 centipoise (cP) and 97 cP, respectively.
Conclusion: In general, with respect to characteristics of BNC products and comparison with other studies, we concluded that suitable BNC is produced in this study that with respect to research needed in this field in the country and medical applications and engineering are important.
کلیدواژهها [English]