مدل‌سازی مطلوبیت رویشگاه گونه ملج (Ulmus glabra Huds.) در جنگل خیرود نوشهر

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشکده منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس

2 دانشکده منابع طبیعی و علوم دریایی - دانشگاه تربیت مدرس

3 دانشکدة منابع طبیعی و علوم دریایی نور، دانشگاه تربیت مدرس

چکیده

سابقه و هدف: گونه ملج یکی از گونه‌های با ارزش جنگل‌های شمال کشور می‌باشد که به دلیل دخالت بی‌رویه انسان و شیوع بیماری مرگ نارون در معرض خطر انقراض قرار دارد و باید به نحو شایسته ای از نابودی آن جلوگیری گردد، بنابراین حفظ و احیاء این گونه با ارزش امری ضروری است. یکی از مهم‌ترین ارکان مدیریتی در خصوص حفاظت و احیاء گونه‌های با ارزش، شناسایی رویشگاه‌های مطلوب آن گونه می‌باشد. مدل‌های پراکنش گونه‌ای یک الگوریتم تحلیلی- آماری به‌منظور شناخت روابط بین پراکنش گونه‌های گیاهی و عوامل محیطی می‌باشند که برای تعیین رویشگاه‌های مطلوب گونه‌ها مورد استفاده قرار می‌گیرند. هدف از این پژوهش پیش‌بینی حضور گونه ملج در جنگل خیرود نوشهر با استفاده از مدل‌های خطی و جمعی تعمیم‌یافته و تهیه نقشه مطلوبیت رویشگاه با استفاده از بهترین مدل است.
مواد و روش‌ها: در مطالعه حاضر با بهره‌گیری از دو روش مدل‌سازی متداول در تهیه نقشه مطلوبیت رویشگاه، یعنی مدل‌های خطی و جمعی تعمیم‌یافته و نقشه خصوصیات اولیه و ثانویه توپوگرافی حاصل از مدل‌های رقومی زمین با اندازه تفکیک 5/12 متر، نقشه مطلوبیت رویشگاه ملج در جنگل خیرود نوشهر تهیه گردید. با استفاده از روش نمونه‌برداری بدون قطعه‌نمونه و اطلاعات آماربرداری، تعداد 873 پایه ملج ثبت شد. از آنجا که توپوگرافی یکی از فاکتورهای بسیار مهم در پراکنش گونه‌های گیاهی می‌باشد، خصوصیات اولیه (شیب، جهت، ارتفاع از سطح دریا، انحنای سطح زمین، شامل انحنای مسطح، انحنای پروفیلی و انحنای تانژانتی) و ثانویه (شاخص‌های رطوبت توپوگرافی، توان جریان، تابشی و حرارتی) توپوگرافی با استفاده از مدل رقومی زمین با دقت ارتفاعی 5/12 متر محاسبه گردید. با توجه به موجود بودن نقشه خاک شناسی، حاصلخیزی خاک و زمین شناسی منطقه مورد مطالعه، ارزش هر یک از این مشخصه‌های محیطی فوق در محل پایه ملج استخراج گردید. در مرحله بعد، با استفاده از دو روش مدل‌سازی خطی و جمعی تعمیم یافته، احتمال حضور گونه ملج در ارتباط با متغیرهای محیطی ذکر شده، مدل‌سازی گردید.
یافته‌ها: ارزیابی مدل‌های مورد بررسی با استفاده از معیارهای سطح زیر منحنی، کاپا و آماره مهارت درست، نشان داد که مدل جمعی تعمیم‌یافته با مقدار سطح زیر منحنی برابر 78/0، مقدار کاپا برابر 44/0 و مقدار TSS برابر 44/0 درای عملکرد بهتری است. بر اساس ارزیابی اهمیت نسبی متغیرها در مدل جمعی تعمیم‌یافته، ارتفاع از سطح دریا و عمق دره، مهم‌ترین متغیرها در تعیین رویشگاه گونه ملج می‌باشند. مطالعه حاضر نشان داد که حدود 62 درصد منطقه موردمطالعه، دارای پتانسیل مطلوب برای گونه ملج می‌باشد.
نتیجه‌گیری: نتایج حاصل از این مطالعه نشان داد که به علت شرایط رطوبتی، حرارتی، نوری و توپوگرافی مناسب موجود در میان بند و همچنین پتانسیل بالای این منطقه جهت حضور گونه ملج، این منطقه بهترین رویشگاه برای این گونه می‌باشد. نتایج و روش های به کار گرفته در این پژوهش می‌تواند در جهت کمک به تصمیمات مدیریتی در جهت حفاظت و احیاء گونه با ارزش ملج و همچنین سایر گونه های نادر و در معرض خطر، مورد استفاده واقع گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting the habitat suitability of Wych elm (Ulmus glabra Huds.) in Kheyroud Forest

نویسندگان [English]

  • Atefe Mohammadi 1
  • Seyed Jalil Alavi 2
  • Seyed Mohsen Hosseini 3
چکیده [English]

Abstract
Background and objectives:
Wych elm is one of the most invaluable native species in Hyrcanian forest. But due to Dutch elm disease outbreak in several decades ago, and illegal cutting of this species, its dominance in these forests has been significantly decreased. Hence, it must be adequately preserved from extinction. Therefore, maintaining and restoring this invaluable species is essential. Habitat suitability models could constitute a good tool for decision-making within the framework of applied forest ecology. They have mainly been used in strategies for conservation, planning and forest management. Habitat suitability or species distribution models are defined as statistical analysis algorithms that relate species’ field observations species data to environmental predictor variables. The aime of study is predicts the distribution of Wych elm species in Kheyroud forest using GLM and GAM models and Provide habitat suitability map with the best models..
Materials and methods:
Using digital elevation models and extracted primary and secondary topographic attributes from DEM, the habitat suitability of Wych elm was prepared in Kheyroud forests, Nowshar by using two common modeling techniques i.e. GLM and GAM. Due to the extent of the study area and being dispersed in the area, the locations of Wych elm individual trees with DBH > 10 cm were recorded by Global Positioning System by selective sampling. The primary and secondary topographic attributes calculated from digital elevation model with 12.5 m resolution along with soil characteristics, soil fertility and geology maps were then derived at each Wych elm location.
Results:
Results showed that GAM outperforms GLM based on AUC, Kappa and TSS criteria. The results also indicated altitude and valley depth were the most important variables in determining the habitat suitability of Wych elm species. The results also showed that 62% of study area has acceptable potential for presence of Wych elm species.
Conclusion:
The results of this study showed that due to the optimal moisture, thermal, light and topographic conditions in mid-lands and also the high potential of this region for the presence of the Wych elm species, this area is the best habitat for this species. The results and methods used in this research can be used to assist the management decisions to conserve and restore the Wych elm and other rare and endangered species.

Conclusion:
The results of this study showed that due to the optimal moisture, thermal, light and topographic conditions in mid-lands and also the high potential of this region for the presence of the Wych elm species, this area is the best habitat for this species. The results and methods used in this research can be used to assist the management decisions to conserve and restore the Wych elm and other rare and endangered species.

کلیدواژه‌ها [English]

  • Suitable habitats
  • Primary and secondary topographic attributes
  • Genralized linear model
  • Generalized additive models
1.Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., and Muys, B. 2010. Comparison and
ranking of different modelling techniques for prediction of site index in Mediterranean
mountain forests. Ecological modelling, 221(8): 1119-1130.
2.Ahmadi, K., Alavi, S.J., and Tabari, M. 2015. Evaluation of Oriental Beech (Fagus orientalis
Lipsky.) Site Productivity using Generalized Additive Model (Case study: Tarbiat Modares
University forest research station). Journal of Iranian Forest, 7(1): 17-32. (In Persian)
3.Alavi, S.J., Zahedi Amiri, Gh., Marvi Mohajer, M.R., and Noori, Z. 2007. Spatial distribution
of Ulmus glabra Huds. tree species related to physiographic factors in Kheyroodkenar
educational forest. Journal of Environmental Studies, 33(43): 93-100. (In Persian)
4.Ardakani, M.R. 2012. Ecology, Tehran University. Press, 340p. (In Persian)
5.Aspinall, R.J. 2002. Use of logistic regression for validation of maps of the spatial distribution
of vegetation species derived from high spatial resolution hyperspectral remotely sensed
data. Ecological Modelling, 157(2): 301-312.
6.Auslander, M., Nevo, E., and Inbar, M. 2003. The effects of slope orientation on plant growth,
developmental instability and susceptibility to herbivores. Journal of Arid Environments,
55(3): 405-416.
7.Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and
some possible new approaches. Ecological modelling, 200(1): 1-19.
8.Beauregard, F., and de Blois, S. 2014. Beyond a climate-centric view of plant distribution:
edaphic variables add value to distribution Models. PloS one, 9(3): e92642.
9.Bolandian, H. 1999. Knowing the forest. Imam Khomeini International University Press.
245p. (In Persian)
1- Machine Learning
10.Bourque, C.P.A., and Bayat, M. 2015. Landscape Variation in Tree Species Richness in
Northern Iran Forests. PloS one, 10(4): 121-172.
11.Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., and Singer,
A. 2012. Correlation and process in species distribution models: bridging a dichotomy.
Journal of Biogeography, 39(12): 2119-2131.
12.Fahimipoor, A., Zarechahooki, M.A., and Tavili, A. 2010. The relationship between some
indicator species for environmental Pasture. Journal of Rangeland, 4(1): 23-32. (In Persian)
13.Ghahraman, A. 2009. Biodiversity of plant species in Iran, Tehran University. Press, 1210p.
(In Persian)
14.Ghanbari, F., Shataei Jooibari, Sh., Azim Mohseni, M., Habashi, H. 2011. Application of
topography and logistic regression in forest type spatial prediction Iranian Journal of Forest
and Poplar Research, 19(1): 27-41. (In Persian)
15.Harrar, Ellwood S., and Harrar, J.G. 1962. Guide to southern trees. 2d ed. Dover, New York.
709p.
16.Hastie, T., and Tibshirani, R. 1986. Generalized additive models. Statistical science. 297-
310.
17.Matusick, G., Ruthrof, K.X., Brouwers, N.C., and Hardy, G.S.J. 2014. Topography
influences the distribution of autumn frost damage on trees in a Mediterranean-type
Eucalyptus forest. Trees, 28(5): 1449-1462.
18.Hill, M.J., Mathers, K.L., and Wood, P.J. 2015. The aquatic macroinvertebrate biodiversity
of urban ponds in a medium-sized European town (Loughborough, UK). Hydrobiologia 760:
225–238.
19.Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., and Kent, J. 2000.
Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853-858.
20.Pfiffer, K. 1996. Schwizerisher forestkalender. Anhang. Zurich. Verlag Frauenfeld. 176p.
21.Piedallu, C., Gégout, J.C., Lebourgeois, F., and Seynave, I. 2016. Soil aeration, water deficit,
nitrogen availability, acidity and temperature all contribute to shaping tree species
distribution in temperate forests. Journal of Vegetation Science, 27(2): 387-399.
22.Rahmani, A., Dehghani Shooraki, Y., Banch Shafie, Sh. 2009. Nutritional Status of elm
(Ulmus glabra Huds) trees in National Botanical Garden of Iran. Iranian Journal of Forest
and Poplar Research, 17(1): 99-106. (In Persian)
23.Rossier, L. 2011. Predicting spatial patterns of functional traits. M.Sc. Thesis. University of
Lausanne, 44p.
24.Rovzar, C., Gillespie, T.W., Kawelo, K., McCain, M., Riordan, E.C., and Pau, S. 2012.
Modelling the potential distribution of endangered, endemic Hibiscus brackenridgei on Oahu
to assess the impacts of climate change and prioritize conservation efforts. Pacific
Conservation Biology, 19(2): 156-168.
25.R Core Team (2016). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
26.Sousa-Silva, R., Alves, P., Honrado, J., and Lomba, A. 2014. Improving the assessment and
reporting on rare and endangered species through species distribution models. Global
Ecology and Conservation, 2: 226-237.
27.Vedel, H., and Lange, J. 1960. Trees and bushes in wood and hedgerow. Methuen and Co.
Ltd. Press. 224p.
28.Virkkala, R., Marmion, M., Heikkinen, R.K., Thuiller, W., and Luoto, M. 2010. Predicting
range shifts of northern bird species: influence of modelling technique and topography. Acta
Oecologica, 36(3): 269-281.
29.Yee, T.W., and Mitchell, N.D. 1991. Generalized additive models in plant ecology. Journal
of vegetation science, 2(5): 587-602.
30.Zahedi Amiri, Gh., Alavi, S.J., Marvi Mohajer, R., and Nouri, Z. 2008. Investigation on the
effects of some soil properties on spatial dispersion of Wych elm (Ulmus glabra Huds) in
Hyrcanian forest, Case study: Kheyroudkenar forest. Journal of the Iranian Natural
Resources, 61(3): 637-652. (In Persian)