ارزیابی همگنی توزیع مکانی درختان در توده آمیخته کهور ایرانی (Prosopis cineraria) در منطقه حفاظت شده بارچاه استان هرمزگان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

دانشگاه شیراز

چکیده

سابقه و هدف: الگوی مکانی درختان در یک توده نتیجه فرآیندهای مختلفی از جمله نوع برهمکنش آنها با یکدیگر، پراکنش بذر و ناهمگنی محیطی است. بنابراین آگاهی از الگوی مکانی گونه‌های گیاهی به منظور درک عمیق‌تر فرضیه‌های مختلف در بوم‌شناسی حائز اهمیت است. با توجه به این اهمیت، شناخت نااریب الگوهای مکانی گونه‌های گیاهی در بوم‌شناسی با استفاده از راهبردهای قابل اطمینان ضروری است. آماره‌های اختصاری که در تحلیل الگوی نقطه‌ای برای دستیابی به الگوی مکانی گیاهان طراحی شده‌اند بر اساس فرآیند پوآسون همگن (تصادفی مکانی کامل) طراحی شده‌اند. بنابراین بررسی همگنی توزیع مکانی درختان پیش از تحلیل الگوی مکانی آنها ضروری است. با توجه به این موضوع، مطالعه حاضر با هدف ارزیابی همگنی توزیع مکانی درختان در یک توده آمیخته کهور ایرانی در ناحیه رویشی خلیج‌عمانی با استفاده از دو روش انجام شد. همچنین بررسی تأثیر عدم توجه به پیش فرض تصادفی مکانی کامل بر تحلیل الگوی مکانی درختان هدف دیگر این مطالعه بود.
مواد و روش‌ها: یک قطعه‌نمونه با مساحت 49 هکتار (700 متر × 700 متر) از یک توده آمیخته کهور ایرانی در منطقه حفاظت شده بارچاه استان هرمزگان انتخاب شد. موقعیت مکانی همه درختان و درختچه‌های با ارتفاع بیش از 5/0 متر قطعه‌نمونه ثبت شده و ارتفاع و مساحت تاج آنها اندازه‌گیری شد. همچنین یک قطعه‌نمونه دیگر با شرایط محیطی و تعداد درخت مشابه با توزیع مکانی همگن و الگوی مکانی کپه‌ای درختان شبیه‌سازی شد. دو روش آزمون کای اسکوئر مبتنی بر کوادرات به همراه شاخص باقیمانده پیرسون و آزمون کولموگروف اسمیرنوف برای تشخیص همگنی توزیع مکانی درختان در دو قطعه‌نمونه به کار رفتند. همچنین برای تحلیل الگوی مکانی در دو قطعه نمونه از تابع همبستگی جفتی همگن و ناهمگن استفاده شد.
یافته‌ها: قطعه‌نمونه مورد مطالعه پوشیده از 498 درخت و درختچه بود که از 149 پایه کهور ایرانی، 248 پایه آکاسیای چتری و 101 پایه دهیر تشکیل شده بودند. نتایج نشان داد که آزمون کای اسکوئر تنها با ترکیب 4 × 4 کوادرات توانست همگنی قطعه نمونه شبیه-سازی را تشخیص دهد. میانگین شاخص باقیمانده پیرسون نیز نتوانست تفاوت همگنی در دو قطعه‌نمونه را شناسایی نماید. در حالی که آزمون کولموگروف اسمیرنوف تفاوت توزیع مکانی درختان در قطعه‌نمونه واقعی (001/0p-value نتیجه‌گیری: به طور کلی، نتیجه‌گیری شد که آزمون کولموگروف اسمیرنوف روشی قابل اطمینان در ارزیابی همگنی توزیع مکانی گیاهان در منطقه مورد مطالعه بود. همچنین نشان داده شد که کارایی تابع g در شناسایی الگوی مکانی گیاهان از همگنی توزیع مکانی آنها تأثیر گرفته و استفاده از شکل نامناسب تابع g، منجر به ارائه نتایج اریب در تحلیل الگوی مکانی در منطقه مورد مطالعه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of homogeneity of tree spatial distribution in a mixed mesquite (Prosopis cineraria) stand in Barchah protected area, Hormozgan province

نویسندگان [English]

  • Elaheh Khosravi
  • Yousef Erfanifard
چکیده [English]

Background and objectives: Spatial pattern of trees in a stand is the outcome of different processes such as their interactions, seed dispersal, and environmental heterogeneity. In consequence, knowledge of spatial pattern of plant species is important for deeper understanding of different hypotheses in ecology. Considering the importance, unbiased recognition of spatial pattern of plant species using reliable techniques is essential in ecology. Summary statistics used in point pattern analysis to explore spatial pattern of plants are based on the null model of homogeneous Poisson process (Complete spatial randomness: CSR). So it seems necessary to investigate homogeneity of tree spatial distribution before analyzing their spatial pattern. Considering this issue, this study was aimed to evaluate the homogeneity of tree spatial distribution in a mixed mesquite stand in Khalij-Omanian vegetation zone using two methods. Moreover, it was also aimed to investigate the impact of ignoring the CSR null model on spatial pattern analysis of trees in the plot.
Materials and methods: A 49-ha study plot (700 m × 700 m) was selected in a mixed mesquite stand in Barchah protected area in Hormozgand province. The spatial location of all tree and shrubs with height > 0.5 m was registered and their height and crown area were measured. Furthermore, another plot with similar number of plants and environmental conditions was simulated with homogeneous spatial distribution and clustered spatial pattern of plants. Two methods of Chi-squared test based on quadrat accompanied with Pearson residuals and Kolmogorov-Smirnov test were applied to explore homogeneity of tree spatial distribution. Moreover, homogeneous and inhomogeneous pair correlation functions were used to analyze spatial patterns in two plots.
Results: The study plot was covered by 498 trees and shrubs including 149 mesquites, 248 umbrella thorns (Acacia tortilis), and 101 desert thorns (Lycium shawii). The results showed that Chi-squared test only with 4 × 4 quadrats could recognize homogeneity of the simulated plot. Mean of Pearson residuals also did not characterize the homogeneity difference of two plots. While Kolmogorov-Smirnov test explored the difference between tree spatial distribution of the real plot (p-value Conclusion: In general, it was concluded that Kolmogorov-Smirnov test is a reliable method to assess homogeneity of plant spatial distribution in the study area. Moreover, it was revealed that efficiency of g(r) in spatial pattern recognition of plants was influenced by homogeneity of their spatial distribution and application of inappropriate form of g(r) resulted in biased spatial pattern analysis in the study site.

کلیدواژه‌ها [English]

  • Kolmogorov-Smirnov test
  • Chi-squared test
  • Spatial pattern
  • Mesquite
  • Homogeneity
1. Alavi, S.J., Zahedi Amiri, Gh., and Marvie Mohadjer, M.R. 2006. An investigation of spatial
pattern in Wych Elm (Ulmus glabra) in Hyrcanian forests. Iranian J. of Natural Resources,
58: 793-804. (In Persian)
2. Alavi, J., Zahedi Amiri, G., Nouri, Z., and Marvi Mohajer, M.R. 2014. Application of
Ripley’s K-Function in Detecting Spatial Pattern of Wych Elm Species in Khayroud Forests,
North of Iran. Iranian J. of Wood and Forest Science. 20: 4.21-39. (In Persian)
3. Basiri, R., Sohrabi, H., and Mozayen, M. 2006. A statistical analysis of the spatial pattern of
trees species in Ghamisheleh Marivan Region, Iran. Iranian J. of Natural Resources. 59:
2.579-588. (In Persian)
4. Biabani, K., Pilevar, B., and Safari, A. 2016. Comparison of spatial patterns and interspecific
association of Gall oak (Quercus infectoria) and Lebanon oak (Q. libani) in two less
degraded and degraded oak stands in Northern Zagros (Case study: KhedrAbad, Sardasht).
Iranian J. of Forest and Poplar Research, 24: 1.77-88. (In Persian)
5. Brown, N., Jeger, M., Kirk, S., Xu, X., and Denman, S. 2016. Spatial and temporal patterns
in symptom expression within eight woodlands affected by Acute Oak Decline. J. of Forest
Ecology and Management, 360: 97-109.
6. Choo, J., Juenger, T.E., and Simpson, B.B. 2012. Consequences of frugivore-mediated seed
dispersal for the spatial and genetic structures of a neotropical palm. J. of Molecular
Ecology, 21: 4.1019-1031.
7. Cisz, M.E., Falkowski, M.J., and Orr, B. 2013. Small-scale spatial pattern of Copernicia
alba morong near Bahia Negra, Paraguay. J. of Natural Resources, 4: 369-377.
8. Clyatt, K.A., Crotteau, J.S., Schaedel, M.S., Wiggins, H.L., Kelley, H., Churchill, D.J., and
Larson, A.J. 2016. Historical spatial patterns and contemporary tree mortality in dry mixedconifer
forests. J. of Forest Ecology and Management, 361: 23-37.
9. Diggle, P.J. 2003. Statistical analysis of spatial point patterns. Arnold Publishers, London,
UK, 159p.
10. Emtehani, M., Azimzadeh, H.R., and Ekhtesasi, M.R. 2009. Ecological status of Indian
mesquite (Prosopis cineraria) and its environmental effects in the south of Iran. Iranian J. of
Environmental Studies, 34: 48.81–89. (In Persian)
11. Erfanifard, Y., and Mahdian, F. 2012. Comparative investigation on the methods of true
spatial pattern analysis of trees in forests, case study: Wild pistachio research forest, Fars
province, Iran. Iranian J. of Forest and Poplar Research, 20: 1.62-73. (In Persian)
12. Erfanifard, Y., and Rezayan, F. 2014. Suitable methods in spatial pattern analysis of
heterogeneous wild pistachio (Pistacia atlantica Desf.) woodlands in Zagros, Iran. Iranian J.
of Applied Ecology, 9: 81-91. (In Persian)
13. Gao, M. 2013. Detecting spatial aggregation from distance sampling: a probability
distribution model of nearest neighbor distance. J. of Ecological Research, 28: 397-405.
14. Gelfand, A.E., Diggle, P.J., Fuentes, M., and Guttorp, P. 2010. Handbook of spatial
statistics. CRC Press, Florida, USA, 608p.
15. Getzin, S., Wiegand, T., Wiegand, K., and He, F. 2008. Heterogeneity influences spatial
patterns and demographics in forest stands. J. of Ecology, 96: 807-820.
16. Grabarnik, P., Myllymäki, M., and Stoyan, D. 2011. Correct testing of mark independence
for marked point patterns. J. of Ecological Modeling, 222: 3888-3894.
17. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. 2008. Statistical analysis and modelling
of spatial point patterns. John Wiley and Sons, West Sussex, UK, 534p.
18. Jazirehi, M.H., and Ebrahimi Rostaghi, M. 2003. Silviculture in Zagros. TehranUniv. Press,
560p. (In Persian)
19. Kiani, B., Tabari, M., Fallah, A., Hosseini, S.M., and Iran-Nejad Parizi, M.H. 2011. The use
of Nearest Neighbor, Mean Square and Ripley's K-function methods to determine spatial
pattern of Saxaul (Haloxylon ammodenderon C.A.Mey) in Siahkooh protected area, Yazd
province. Iranian J. of Forest and Poplar Research, 19: 3.356-369. (In Persian)
20. Law, R., Illian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S., and Gunatilleke,
I.A.U.N. 2009. Ecological information from spatial patterns of plants: insights from point
process theory. J. of Ecology, 97: 616-628.
21. Najafi Tireh Shabankareh, K., and Jalili, A. 2012. Effects of Prosopis juliflora (SW.) DC on
some physical and chemical soil properties. Iranian J. of Range and Desert Research, 19:
3.406-420. (In Persian)
22. Nguyen, H.H., Uria‐Diez, J., and Wiegand, K. 2016. Spatial distribution and association
patterns in a tropical evergreen broad‐leaved forest of north‐central Vietnam. J. of
Vegetation Science, 27: 318-327.
23. Perry, G.L.W., Enright, N.J., Miller B.P., and La-Mont, B.B. 2009. Nearest-neighbor
interactions in species-rich shrublands: The roles of abundance, spatial patterns and
resources. Oikos, 118: 2.161-174.
24. Protection plan of forests and rangelands in Brismon. 2006. Natural Resources General
Office of Hormozgan province, 130p.
25. Rayburn, A.P., Schiffers, K., and Schupp, E.W. 2011. Use of precise spatial data for
describing spatial patterns and plant interactions in a diverse Great Basin shrub com-munity.
J. of Plant Ecology, 212: 4.585-594.
26. Salas, C., LeMay, V., Nunez, P., Pacheco, P., and Espinosa, A. 2006. Spatial patterns in an
old-growth Nothofagus oblique forest in south-central Chile. J. of Forest Ecology and
Management, 231: 38-46.
27. Sohrabi, H. 2014. Spatial pattern of woody species in Chartagh forest reserve, Ardal. Iranian
J. of Forest and Poplar Research, 22: 1.27-38. (In Persian)
28. Trifković, S., and Yamamoto, H. 2008. Indexing of spatial patterns of trees using a mean of
angles. J. of Forest Research, 13: 2.117-121.
29. Usha, G., Natghawat, G., and Goel, U. 1990. Relative effects of Prosopis juliflora and
Prosopis cineraria on seed germination and seedling growth. Acta Botanica Indica, 18: 1.76-
79.
30. Villarreal, M.L., and Yool, S.R. 2008. Analysis of fire-related vegetation patterns in the
Huachuca Mountains, Arizona, USA, and Sierra Los Ajos, Sonora, Mexico. J. of Fire
Ecology, 4: 1.14-33.