کاربرد شاخص های نزدیک ترین همسایه در ارزیابی ساختار جامعه راش- ممرزستان در ناحیه رویشی هیرکانی (مطالعه موردی: جنگل های ناو اسالم گیلان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان

2 استادیار گروه جنگلداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان.

3 دانشیار، بخش منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز.

چکیده

سابقه و هدف: حفظ ساختار و تنوع زیستی اکوسیستم ها، یکی از اهداف مهم جنگلداری نوین در نظر گرفته می شود. به این منظور، برای مدیریت جنگل به ابزارهایی نیاز است که بتوان با صرف کمترین هزینه و زمان به بررسی وضعیت فعلی و همچنین تغییرات ایجاد شده بر اثر فعالیت های مدیریتی و تکامل طبیعی جنگل پرداخت. شاخص های نزدیک ترین همسایه دارای مزایایی هستند که کاربرد آنها را نسبت به اندازه گیری های مستقیم تنوع زیستی ارجحیت می بخشد. زیرا علاوه بر بررسی تنوع گونه ای به بررسی موقعیت مکانی درختان می پردازند. همچنین شاخص های نزدیک ترین همسایه اطلاعات ارزشمندی در مورد روابط بوم شناختی درختان در جنگل ارائه می کنند. بنابراین این پژوهش با هدف معرفی و کاربرد شاخص های مهم مبتنی بر تحلیل نزدیک ترین همسایه در بررسی روابط بوم شناختی جامعه راش ممرزستان در جنگل های ناو اسالم گیلان انجام شد.
مواد و روش ها: به منظور انجام این پژوهش 7 قطعه نمونه یک هکتاری در جوامع طبیعی راش ممرزستان ناو اسالم گیلان که از لحاظ شرایط محیطی همگن بودند، آماربرداری شدند و در هر قطعه نمونه مشخصه های فاصله و آزیموت کلیه پایه های درختی موجود در قطعات نمونه با قطر برابر سینه بیش از 5/7 سانتی متر نسبت به مرکز قطعه نمونه یادداشت و گونه و قطر برابر سینه آن ها نیز ثبت شد. سپس با استفاده از شاخص های زاویه یکنواخت، میانگین جهت، آمیختگی گونه ای و تفکیک به تحلیل توزیع مکانی و تنوع گونه ای درختان پرداخته شد. مقدار هر یک از شاخص های مذکور ابتدا برای هریک از قطعات نمونه به صورت مجزا محاسبه شد. سپس با میانگین گیری از مقادیر به دست آمده برای هر یک از قطعات نمونه، مقدار میانگین شاخص ها برای جامعه راش ممرزستان محاسبه شد.
یافته ها: نتایج نشان داد که در 7 قطعه نمونه یک هکتاری مورد بررسی در جامعه راش ممرزستان، گونه های راش، ممرز، شیردار، پلت و توسکای ییلاقی از نظر تعداد در هکتار دارای بیشترین مقدار تراکم پایه ها هستند. میانگین شاخص های زاویه یکنواخت و میانگین جهت به ترتیب 53/0 و 02/2 محاسبه شد که نشان دهنده توزیعی بین تصادفی و کپه ای است. از نظر تنوع گونه ای، جوامع راش ممرزستان با میانگین ارزش های 47/0 و 25/0 برای شاخص های آمیختگی گونه ای و تفکیک، دارای اختلاط گونه ای متوسطی بودند. مقدار شاخص آمیختگی گونه ای نشان دهنده اختلاط کم گونه راش و اختلاط زیاد سایر گونه ها بود. مقدار شاخص تفکیک نشان داد که جفت های درختی مشاهده شده یا نزدیک ترین همسایه های درختان مرجع متعلق به گونه های متفاوتی می باشد.
نتیجه گیری: به طور کلی نتایج این مطالعه کاربرد شاخص های نزدیک ترین همسایه را در تحلیل مولفه های ساختاری جوامع راش ممرزستان نشان می دهد و از نتایج به دست آمده می توان جهت برنامه ریزی به منظور احیای ساختار و وضعیت تنوع زیستی جوامع راش ممرستان تخریب یافته استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of nearest neighbor indices to assessment structure of Fageto-Carpinetum in Growth area hyrcanian (Case Study: Nave Asalem-Gilan forests -Iran)

نویسندگان [English]

  • Peyman farhadi 1
  • Javad Soosani 2
  • Syed Yousef Erfanifard 3
1
2
3
چکیده [English]

Background and objectives: Maintaining the structure and biodiversity of ecosystems is considered to be one of the most important goals of modern forestry. For this purpose, the tools are needed for forest management, to have the lowest cost and time to check the current status, as well as the changes caused by development of forest management activities. Indicators of nearest neighbor have advantages that their application gives priority to direct measurements of biological diversity. Because in addition to the study of species diversity, it investigates the locations of trees. Also nearest neighbor indices provide valuable information about ecological interactions of trees in forests. Therefore, this study was aimed to introduce and apply important indices based on nearest neighbor analysis to study ecological relationships of trees in beech-hornbeam stands in Nave Asalem- Gilan forests.
Materials and methods: In order to do this research, seven 1-ha plots with homogeneous environmental conditions were inventoried in a Fageto-Carpinetum association in Nave Asalem- Gilan. In each plot, distance and azimuth of all trees on the plot with more than 7.5 cm diameter at breast height from the center of sampling area and species, and diameter at breast height were recorded. The spatial pattern and species diversity were then investigated using the uniform angle, mean directional, species mingling and segregation indices. The amounts of each of the mentioned indices were calculated for each sample individually. The average of the values obtained for each sample were calculated for the Fageto-Carpinetum.
Results: The results showed in seven 1-ha plots of Fageto-Carpinetum, Fagus orientalis, Carpinus betulus, Acer cappadocicum, Acer velutinum and Alnus subcordata had the maximum density per hectare. The values of uniform angle and mean directional indices were 0.53 and 2.02, respectively, showing a spatial distribution between random and clustered. In terms of species diversity, the Fageto-Carpinetum association with an average of 0.47 and 0.25 for species mingling and segregation indices, respectively, presenting a medium level of species mixing. The amount of species mingling indices indicated low level of mixing of beech species and high level of mixing of other species. The segregation index showed a pair of trees or nearest neighbor reference trees belonged to different species.
Conclusion: In general, the results of this study indicated the efficiency of nearest neighbor indices to study the structure of Fageto-Carpinetum associations and the results can be used for planning to revitalize the structure and status of biodiversity in degraded Fageto-Carpinetum associations.

کلیدواژه‌ها [English]

  • Spatial pattern
  • ecological
  • species diversity
  • Nave asalem forests
  • Nearest Neighbor
1. Aguirre, O., Hui, G., Gadow, K.V., and Jimenez, J. 2003. An analysis of forest structure
using neighborhood-based variables. Forest Ecology and Management, 183: 137-145.
2. Alijani, V., Feghhi, J., Zobeiri, M., and Marvi Mohadjer, M.R. 2012. Quantifying the spatial
structure in hyrcanian submountain Forest (Case Study: Gorazbon District of Kheirud
Forest-Noushahr-Iran). Iranian Journal of the Natural Resource, 65: 1. 111-125. (In Persian)
3. Bettinger, P., and Tang, M. 2015. Tree-Level harvest optimization for structure-Based forest
management based on the species mingling index. Forests, 6: 1121-1144.
4. Bilek, L., Remes, J., and Zahradnik, D. 2011. Managed vs unmanaged structure of beech
forest stands (Fagus sylvatica L.) after 50 years of development, Central Bohemia. Forest
Systems, 20: 1. 122–138.
5. Crecente-Campo, F., Pommerening, A., and Rodriguez-Soalleiro, R. 2009. Impacts of
thinning on structure, growth and risk of crown fire in a Pinus sylvestris L. plantation in
northern Spain. Forest Ecology and Management, 257: 1945-1954.
6. Corral-Rivas, J.J., Pommerening, A., Gadow K., and Stoyan, D. 2006. An analysis of two
directional indices for characterizing the spatial distribution of forest trees. In: Models of tree
growth and spatial structure for multi-species, uneven-aged forests in Durango (Mexico).
PhD dissertation. Faculty of Forest Science and Forest Ecology, Georg-August University of
Göttingen. Pp: 106–121.
7. Corral-Rivas, J.J., Wehenkel, C., Castellanos-Bocaz, H., Vargas-Laretta, B., and Dieguez-
Aranda, U. 2010. A permutation test of spatial randomness: application to nearest neighbor
indices in forest stands. Journal of Forestry Research, 15: 218–225.
8. Dale, M.R.T. 2004. Spatial Pattern Analysis in Plant Ecology. Cambridge University Press,
UK, 338p.
9. Diggle, P.J. 2003. Statistical Analysis of Spatial Point Patterns. Arnold Pub, UK, 159p.
10. Ebrahimi, S.S., and Pourbabaei, H. 2013. Effect of conservation on spatial pattern of
dominant trees in Beech (Fagus Orientalis Lipsky) communities, (case study: Masal,
Guilan). Iranian Journal of Applied Ecology, 2: 4. 13-24. (In Persian)
11. Erfanifard, S.Y., Zare, L., and Feghhi, J. 2014. Application of nearest neighbor indices in
Persian Oak (Quercus brantii var. persica) coppice stands of zagros forests. Iranian Journal
of Applied Ecology, 2: 5. 15-25. (In Persian)
12. Etemad, V., Moridi, M., and Sefidi, K. 2017. Quantification of beech stands structure in the
stem exclusion phase. Forest and Wood Products, 69: 4. 647-656. (In Persian)
13. Fallah, A., Zobeiri, M., and Marvie Mohajer, R. 2006. An appropriate model for distribution
of diameter classes of natural Beech stands in the sangdeh and shastkolateh forests. Iranian
Journal natural research, 58: 4. 813-821. (In Persian)
14. Falahchay, M.M., Kalantaricherode, K., and Payam, H. 2012. Compare quantitative profile
Natural forest stands in both protected and non-protected area. Iranian Journal of Biological
Sciences, 5: 4. 113-121. (In Persian)
15. Farhadi, P., Soosani, J., Adeli, K., and Alijani, V. 2014. Analysis of zagros forest structure
using neighborhood-based indices (Case study: Ghalehgol forest, Khorramabad). Iranian
Journal of Forest and Poplar Research, 22: 2. 294-306. (In Persian)
16. Fontaine, N., Poulin, M., and Rochefort, L. 2007. Plant diversity associated with pools in
natural and restored peatlands. Peatland Ecology Research Group, 2: 1-17.
17. Frelich, L.E., Calcote, R.L., Davis, M.B., and Pastor, J. 1993. Patch formation and
maintenance in an old-growth hemlock-hardwood forest. Journal of Ecology, 72: 2. 513-527.
18. Freund, J.A., Franklin, J.F., and Lutz, J.A. 2015. Structure of early old-growth Douglas-fir
forests in the Pacific Northwest. Forest Ecology and Management, 335: 11-25.
19. Fuldner, K. 1995. Zur Strukturbeschreibung in Mischbeständen. Forstarchiv, 66: 235-240.
20. Getzin, S., Dean, Ch., Trofymow, A., Wiegand, K., and Wiegand, T. 2006. Spatial patterns
and competition of tree species in a Douglas-fir chronosequence on Vancouver Island.
Echography, 29: 671–682.
21. Graz, P.F. 2004. The behavior of the species mingling index Msp in relation to species
dominance and dispersion. European Journal Forest Research, 123: 87-92.
22. Habashi, H., Hosseini, S.M., Mohammadi, J., and Rahmani, R. 2007. Stand structure and
spatial pattern of trees in mixed Hyrcanian Beech forest of Iran. Iranian Journal of Forest and
Poplar Research, 15: 1. 55-64. (In Persian)
23. Haji Mirza Aghayee, S., Jalilvand, H., Kooch, Y., and Pormajidian, M.R. 2010. Analysis of
important value and spatial pattern of woody species in ecological units (Case study:
Sardabrood forests). Journal of Forest, 1: 2. 51-60. (In Persian)
24. Hassani, M., and Amani, M. 2010. Investigation on structure of oriental beech (Fagus
orientalis Lipsky) stand at optimal stage in Sangdeh forest. Iranian Journal of Forest and
Poplar Research, 18: 2. 163-176. (In Persian)
25. Hossieni, A. 2011. Seed dispersal and sexual regeneration natural establishment of oak,
pistachio and maple in zagros forests (case study, Ilam miyantang forest). Natural
Ecosystems of Iran, 1: 3. 65-73. (In Persian)
26. Hui, G., and Gadow, K. 2002. Das Winkelmass-Herleitung des optimalen standardwinkels.
Allgemeine Forst- Jagdzeitung (AFJZ), 10: 173–177.
27. Hui, G., Li, L., Zhonghua, Z., and Puxing, D. 2007. Comparison of methods in analysis of
the tree spatial distribution pattern. Acta ecologica Sinica. 27: 11. 4717- 4728.
28. Hui, G., and Pommerening, A. 2014. Analysing tree species and size diversity patterns in
multi-species uneven-aged forests of Northern China. Forest Ecology and Management, 316:
125-138.
29. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. 2008. Statistical Analysis and Modelling
of Spatial Point Patterns. John Wiley and Sons Pub, UK, 557p.
30. Kakavand, M., Marvie Mohadjer, M.R., Sagheb-Talebi, Kh., and Sefidi, K. 2014. Structural
diversity of mixed beech stands in the middle stage of succession (Case study: Gorazbon
District, Kheiroud Forest of Nowshahr). Iranian Journal of Forest and Poplar Research, 22:
3. 411- 422. (In Persian)
31. Kint, V., Lust, N., Ferris, R., and Olsthoom, A.F.M. 2000. Quantification of forest stand
structure applied to Scots Pine (Pinus Sylvestris L.) Forests. Investigación Agraria:
Sistemasy Recursos Forestales, 1: 147-163.
32. Kint, V., Meirvenne, M., Nachtergale, L., Geudens, G., and Lust, N. 2003. Spatial methods
for quantifying forest standstructure developmnent: a compariuson between nearestneighbor
indices and variogram analysis. Forest Science, 49: 36–49.
33. Kint, V. 2005. Structural development in ageing temperate Scots pine stands. Forest Ecology
and Management. 214: 237-250.
34. Kimmins, J.P. 2004. A Foundation for Sustainable Forest Management and Environmental
Ethics in Forestry, third ed. Pearson Education, Inc., Upper Saddle River, 700p.
35. Kuehne, C., Weiskittel, A.R., Fraver, S., and Puettmann, K.J. 2015. Effects of thinninginduced
changes in structural heterogeneity on growth, ingrowth, and mortality in secondary
coastal Douglas-fir forests. Canadian Journal of Forest Research, 45: 1448-1461.
36. Lilleleht, A., Sims, A., and Pommerening, A. 2014. Spatial forest structure reconstruction as
a strategy for mitigating edge-bias in circular monitoring plots. Forest Ecology and
management, 316: 47-53.
37. Manabe, T., Nishimura, N., Miura, M., and Yamamoto, S. 2000. Population structure and
spatial patterns for trees in temperate old-growth evergreen broad-leaved forests in Japan.
Journal of Plant Ecology, 151: 181-197.
38. Marvi Mohajer, M.R. 2006. Silviculture. TehranUniv. Press, 387p. (In Persian)
39. Moridi, M., Sefidi, K., and Etemad, V. 2015. Stand characteristics of mixed oriental beech
(Fagus orientalis Lipsky) stands in the Stem exclusion phase, northen Iran. European journal
of forest research, 134: 4. 693-703. (In Persian)
40. Motz, K., Sterba, H., and Pommerening, A. 2010. Sampling measures of tree diversity.
Forest Ecology and Management, 260: 1985-1996.
41. Nouri, Z., Zobeiri, M., Feghhi, J., and Marvie Mohadjer, M.R. 2013. An Investigation on the
Forest Structure and Trees Spatial Pattern in Fagus orientalis stands of Hyrcanian Forests of
Iran (Case Study: Gorazbon District of Kheyrud Forest). Iranian Journal of Natural
Recources, 66: 1. 113-125. (In Persian)
42. Nouri, Z., Zobeiri, M., Feghhi, J., and Marvie Mohadjer, M.R. 2015. Application of nearest
neighbor indices in studying structure of the unlogged beech (Fagus Orientalis Lipsky)
Forests in Kheyrud, Nowshahr. Iranian Journal of Applied Ecology, 4: 12. 11-21. (In
Persian)
43. Newton, A.C. 2007. Forest Ecology and Conservation. A Handbook of Techniques. Oxford
University Press, Oxford, 454p.
44. Pastorella, F., and Paletto, A. 2013. Stand structure indices as tools to support forest
management: an application in Trentino forests (Italy). Journal of Forest Science, 59: 4. 159-
168.
45. Pilehvar, B., Mirazadi, Z., Alijani, V., and Jafari Sarabi, H. 2015. Investigation of Hawthorn
and Maple's stands structures of zagros forest using nearest neighbors indices. Journal of
Zagros Forests Research, 1: 2. 1-14. (In Persian)
46. Pommerening, A. 2006. Evaluating structural indices by reversing forest structural analysis.
Forest Ecology and Management, 224: 266-277.
47. Resaneh, Y., Moshtagh, M.H., and Salehi, P. 2001. Quantitative study of North forests. In:
National Seminar of Management and Sustainable Development of North forests, Iran,
Ramsar. Forest and Range Organization Press, 55-79.
48. Ruprecht, H., Dhar, A., Aigner, B., Oitzinger, G., Raphael, K., and Vacik, H. 2010.
Structural diversity of English yew (Taxus bacata L.) populations. European Journal of
Forest Research, 129: 189-198.
49. Sefidi, K., Copenheaver, C.A., Kakavand, M., and Keivan behjou, F. 2014. Structural
diversity within mature forests in Northern Iran: a case study from a relic population of
persian ironwood (Parrotia persica C.A. Meyer). Forest Science, 61: 2. 258-265.
50. Smith, B., and Wilson, J.B. 1996. A consumer’s guide to evenness indices. Oikos, 76: 70-82.
51. Stoyan, D., and H, Stoyan. 1994. Fractals, Random Shapes and Point Fields. John Wiley and
Sons, UK, 399p.
52. Szmyt, J. 2012. Spatial structure of managed beech-dominated forest: applicability of nearest
neighbors indices. Dendrobiology, 68: 69-76.
53. Szmyt, J. 2014. Spatial statistics in ecological analysis: from indices to functions. Silva
Fennica, 38: 1-31.
54. Szmyt, J., and Korzeniewicz, R. 2014. Do natural processes at the juvenile stage of stand
development differentiate the spatial structure of trees in artificially established forest stands.
Forest Research, 75: 2. 171-179.