1.Lebic, J. (2013). New extruder for a new product: Solid WPC profiles. 9th international WPC Conference, Vienna, Austria, Pp: 346-351.
2.Akinfiresoye, W. A., Olukunle, O. J., & Akintade, A. A. (2017). Development of a wood plastic composite extruder. International Journal of Waste Resources. 7 (4), 1-4.
3.Guha Nukala, S., Kong, I., Babu Kakarla, A., Kong, W., & Kong, W. (2022). Development of wood polymer composites from recycled wood and plastic waste: Thermal and mechanical properties. Journal of Composites Science. 6 (7), 194.
4.Ghoneim, A., Youssef, Y., & Hassan, M. K. (2024). Production of wood plastic composites as a sustainable solution for the post-harvest agriculture waste and plastic waste. The American Journal of Engineering and Technology. 6 (8), 7-21.
5.Aras, U., Kalaycıoğlu, H., Yel, H., & Bitek, G. (2015). Effects of ammonium nitrate on physicomechanical properties and formaldehyde contents of particleboard. Procedia - Social and Behavioral Sciences. 195, 2130-2134.
6.Yang, H. S., Kim, D. J., & Kim, H. J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology. 86 (2), 117-121.
7.Lee, S. Y., Yang, H. S., Kim, H. J., Jeong, C. S., Lim, B. S., & Lee, J. N. (2004). Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures. 65 (3-4), 459-469.
8.Liu, Y., Xie, J., Wu, N., Ma, Y., Menon, C., & Tong, J. (2019). Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose. 26, 4707-4719.
9.Maheshwaran, M. V., Hyness, N. R. J., Senthamaraikannan, P., Saravanakumar, S. S., & Sanjay, M. R. (2018). Characterization of Natural cellulosic fiber from Epipremnum aureum stem. Journal of Natural Fibers. 15, 789-798.
10.Mbatha, A. J., Nkomo, N. Z., & Alugongo, A. A. (2025). A review of the potential applications of composites from agricultural waste. International Journal of Engineering Trends and Technology. 73 (1), 183-191.
11.Shaban, D., & Omaima, S. (2010). The utilization of agriculture waste as one of environmental issue in Egypt. Journal of Applied Sciences Research. 6 (8), 1116-1124.
12.Yu, B., Liu, X., Ji, C., & Sun, H. (2023). Greenhouse gas mitigation strategies and decision support for the utilization of agricultural waste systems: a case study of Jiangxi Province, China. Energy. 265, 126380.
13.Zhao, X., Copenhaver, K., Wang, L., Korey, M., Gardner, D. J., Li, K., Lamm, M. E., Kishore, V., Bhagia, S., Tajvidi, M., Tekinalp, H., Oyedeji, O., Wasti, S., Webb, E. J., Ragauskas, A., Zhu, H. H., Peter, W., & Ozcan, S. (2022). Recycling of natural fiber composites: Challenges and opportunities. Resour, Conservation and Recycling. 177, 105962.
14.Marichelvam, M. K., Manimaran, P., Verma, A., Sanjay, M. R., Siengchin, S., Kandakodeeswaran, K., & Geetha, M. (2021). A novel palm sheath and sugarcane bagasse fiber-based hybrid composites for automotive applications: An experimental approach. Polymer Composites. 42, 512-521.
15.Wu, F., Misra, M., & Mohanty, A. K. (2020). Sustainable green composites from biodegradable plastics blend and natural fiber with balanced performance: Synergy of nano-structured blend and reactive extrusion. Composites Science and Technology. 200, 108369.
16.Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management. 54, 62-73.
17.Birania, S., Kumar, S., Kumar, N., Kumar Attkan, A., Panghal, A., Rohilla, P., & Kumar, R. (2022). Advances in development of biodegradable food packaging material from agricultural and agro-industry waste, Journal of Food Process Engineering. 45 (1), e13930.
18.Turku, I., & Kärki, T. (2013). Reinforcing wood-plastic composites with macro- and micro-sized cellulosic fillers: comparative analysis. Journal of Reinforced Plastics and Composites. 32, 1746-1756.
19.Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology. 68, 557-565.
20.Panthapulakkal, S., Zereshkian, A., & Sain, M. (2006). Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresource Technology. 97 (2), 265-272.
21.Mu, B., Wang, H., Hao, X., & Wang, Q. (2018). Morphology, mechanical properties and dimensional stability of biomass particles/high density polyethylene composites: Effect of species and composition. Polymers. 10 (3), 308.
22.Han, S., Dae, J., & Hyun, J. (2001). Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresource Technology. 86, 117-121.
23.Hedjazi, S., Hosseini, S. B., & Jamalirad, L. (2019). The Potential of different pulping processes in production of pulp- plastic composites (PPC) from bagasse and rice straw. Wood Industry and Engineering. 1 (2), 40-51.
24.Afonso Anges, É., Vieira De Mello, T., & Hilling, E. (2020). Wood pulp for polymer composites production. Floresta. 51 (1), 44-53.
25.Nygård, P., Tanem, B. S., Karlsen, T., Brachet, P., & Leinsvang, B. (2008). Extrusion-based wood fibre-PP composites: Wood powder andpelletized wood fibres- A comparative study. Composites Science and Technology.
68 (15-16), 3418-3424.
26.Li, Lee, C., Ling Chin, K., San H’ng, P., San Khoo, P., & Sahfani Hafizuddin, M. (2023). Characterisation of polypropylene composite reinforced with chemi-thermomechanical pulp from oil palm trunk via injection moulding process. Polymers. 15 (6), 1338.
27.Kajaks, J., Kolbins, A., & Kalnins, K. (2016). Some exploitation properties of wood plastic composites (WPC) based on high density polyethylene (HDPE) and plywood production waste. IOP Conf. Series: Materials Science and Engineering. Pp: 111.
28.Madaraka, M., Ngugi, M., Nzyoki, M., & Fondo, K. (2015). Development of wood-plastic composite at Dedan Kimathi university of technology, Kenya. International Journal of Engineering Research and Applications. 5 (12), 11-17.
29.Pelaez, S., Yadama, M., Garcia-Perez, M., Lowell, E., Zhu, R., & Englund, K. (2016). Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and highdensity polyethylene (HDPE) in wood plastic composite (WPC) production. Holzforschung. 70 (1), 31-38.
30.Rowell, R., Sanadi, A., Caulfield, D., & Jacobson, R. (1999). Utilization of natural fibers in plastic composites: Problems and opportunities. Lignocellulosic Plastic Composites. Pp: 23-51.
31.Stark, N. M., & Rowlands, R. E. (2003). Effects of wood fiber characteristics on mechanical properties of wood/ polypropylene composites. Wood and Fiber Science. 35 (2), 167-174.
32.Hosseini, S. B., Hedjazi, S., Jamalirad, L., Fatahi Amin, M., & Izadyar, S. (2017). Comparative investigation of treated bagasse and rice straw on physical and mechanical properties of natural fiber reinforced composites (NFRC). Iranian Journal of Wood and Paper Industries. 8 (3), 453-469.
33.Popy, R. S., Nayeem, J., Yasin Arafat, K. M., & Rhaman, M. M. (2020). Mild potassium hydroxide pulping of straw. Current Research in Green and Sustainable Chemistry. 3(4), 100015.
34.Kim, S., Moonb, J., Kim, C. H., & Sikha, G. (2008). Mechanical properties of polypropylene/naturalfiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing. 27, 801-806.
35.Jamalirad, L., Aminian, H., & Hedjazi, S. (2019). Exploring the potential of milkweed stalk in wood plastic manufacture. Journal of Natural Fiber, 16(1), 77-87.
36.Babaie, B., Jamalirad, L., Vaziri, V., & Hedjazi, S. (2021). Investigation on the functional properties of wood-plastic composite prepared from black liquor powder obtained from alkali sulfiteanthraquinone (AS-AQ) pulping process with wheat straw. Iranian Journal of Forest and Wood Products. 74 (2), 247-260.
37.Suffo, M., Mata, M., de, L. A., & Molina, S. I. (2020). A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. Journal of Cleaner Production. 257, 120382.
38.Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties, Polymer Testing. 75, 1-11.
39.Hyvärinen, M., & Kärki, T. (2015). The effects of the substitution of wood fiber with agro-based fiber (Barley straw) on the properties of Natural fiber/ polypropylene composites. MATEC Web of Conferences, 30, 01014.