تنوع اقلیمی و پاسخ ریخت‌شناسی برگ‌ بلوط ایرانی (Quercus brantii Lindl.): مطالعه‌ی تطبیقی در پنج اقلیم متفاوت ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکترا رشته علوم زیستی جنگل، دانشگاه ایلام، ایلام، ایران

2 دانشیار، گروه علوم جنگل، دانشگاه ایلام، ایلام، ایران.

چکیده

سابقه و هدف: درک الگوهای تغییرات صفات ریخت‌شناسی برگ در شرایط اقلیمی مختلف نقش مهمی در پیش‌بینی سازگاری و عملکرد گیاهان ایفا می‌کند. این پژوهش با هدف بررسی تنوع کمی صفات برگ و همبستگی بین آنها در پنج اقلیم مختلف ایران (نیمه‌خشک، خشک، مدیترانه‌ای، نیمه‌مرطوب و خیلی‌مرطوب) انجام شد.
مواد و روش‌ها: جنگل‌های زاگرس به دلیل تنوع اقلیمی و حضور گونه شاخص بلوط ایرانی (Quercus brantii Lind.) بستر مناسبی برای مطالعات اکوفیزیولوژیک فراهم می‌آورند. این پژوهش در استان‌های ایلام و کردستان که تفاوت‌های آشکاری در دما و بارندگی دارند انجام شد. داده‌های اقلیمی از ۱۴ ایستگاه هواشناسی گردآوری و شاخص خشکی دومارتن محاسبه شد که منجر به تفکیک منطقه به پنج طبقه اقلیمی شامل خشک، نیمه‌خشک، مدیترانه‌ای، نیمه‌مرطوب و بسیار مرطوب شد. نمونه‌برداری از برگ‌ها در تابستان ۱۴۰۲ و در اوج فصل رشد از ۱۵ منطقه با شرایط اقلیمی متفاوت انجام شد و از هر منطقه پنج درخت بالغ و سالم انتخاب و از هر درخت ۱۵ برگ برداشت شد. صفات ریخت‌شناسی شامل طول، عرض، وزن تر و خشک، مساحت و شاخص‌های مرتبط با آب برگ با دستگاه و محاسبات استاندارد اندازه‌گیری شدند. داده‌ها پس از بررسی نرمال بودن با آزمون کولموگروف–اسمیرنوف، در نرم‌افزار SPSS تحلیل شدند و مقایسه میانگین‌ها با آزمون دانکن انجام گرفت. علاوه بر آن، برای بررسی ارتباط بین صفات، همبستگی پیرسون و برای شناسایی الگوهای کلی، تحلیل مؤلفه‌های اصلی (PCA) در محیط R اجرا شد.
یافته‌ها: طول برگ در اقلیم خیلی‌مرطوب بیشترین مقدار (52/8 میلی‌متر) و در اقلیم نیمه‌مرطوب کمترین مقدار (22/7) را داشت. عرض برگ در اقلیم خیلی‌مرطوب (17/4 میلی‌متر) و خشک (11/4) بیشترین، و طول دمبرگ در اقلیم نیمه‌مرطوب (34/1 میلی‌متر) بالاترین میانگین را نشان داد. بیشترین مساحت برگ در اقلیم‌های مدیترانه‌ای (85/29 سانتی‌متر مربع) و خیلی‌مرطوب (44/28 سانتی‌متر مربع) ثبت شد. بیشترین وزن تر برگ در اقلیم خیلی‌مرطوب (62/0 گرم) و بیشترین وزن خشک برگ در اقلیم نیمه‌خشک (41/0 گرم) ثبت شد. وزن مخصوص خشک برگ در اقلیم نیمه‌خشک بالاترین (0167/0 گرم بر سانتی‌متر مربع) و در مدیترانه‌ای کمترین (0092/0 گرم بر سانتی‌متر مربع) مقدار را داشت. درصد رطوبت وزنی برگ در مدیترانه‌ای (39/46%) و خیلی‌مرطوب (36/44%) بیشترین و در نیمه‌خشک کمترین (54/%25) مقدار را نشان داد. بیشترین میزان آب برگ (28/0%) و بیشترین میزان نسبی آب برگ (95/36%) در اقلیم خیلی‌مرطوب ثبت شد. تحلیل همبستگی نشان داد که بیشتر صفات در همه اقلیم‌ها به‌ غیر از طول دمبرگ در اقلیم نیمه‌خشک با یکدیگر همبستگی مثبت و معنادار دارند.
نتیجه گیری: یافته‌ها نشان دادند که تفاوت‌های اقلیمی منجر به تغییرات معنی‌دار در صفات ریخت‌شناسی برگ می‌شود و اغلب این صفات به‌صورت یک شبکه عملکردی هماهنگ با یکدیگر تغییر می‌کنند که می‌تواند بیانگر استراتژی‌های سازگاری گیاهان در پاسخ به شرایط محیطی متفاوت باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Climatic Diversity and Morphological Responses of Persian Oak Leaves: A Comparative Study in Five Different Climatic Zones of Iran

نویسندگان [English]

  • Forough Soheili 1
  • HamidReza Naji 2
1 PhD student in Forest Biological Sciences, University of Ilam, Ilam, Iran
2 Associate Professor, Department of Forest Sciences, University of Ilam, Ilam, Iran.
چکیده [English]

Background and Objective: Understanding the variation patterns in leaf morphological traits under different climatic conditions plays a critical role in predicting plant adaptation and performance. This study aimed to investigate the quantitative variation of leaf traits and their interrelationships across five distinct climatic zones (semi-arid, arid, Mediterranean, semi-humid, and very humid) in Iran.

Materials and Methods: The Zagros forests in the west and southwest of Iran, characterized by diverse climatic conditions and the presence of the dominant Brant`s oak (Quercus brantii) trees, provide a suitable framework for ecophysiological studies. This research was conducted in Ilam and Kurdistan provinces, which exhibit pronounced differences in temperature and precipitation. Climatic data from 14 meteorological stations were collected, and the de Martonne aridity index was calculated, allowing classification of the region into five climatic zones as mentioned above. Leaf samples were collected in the summer of 2023 at the peak of the growing season from 15 sites representing distinct climatic conditions. At each site, five healthy mature trees were selected, and 15 leaves were sampled per tree. Morphological traits, including leaf length, width, fresh and dry weight, leaf area, and water-related indices were measured using standard instruments and protocols. Data normality was assessed using the Kolmogorov–Smirnov test, followed by analysis of variance (ANOVA) in SPSS, with Duncan’s test applied for mean comparisons. Pearson correlation examined the trait interrelationships, and principal component analysis (PCA) was performed in R software to identify overall patterns.

Results: Leaf length was highest in the very humid zone (8.52 mm) and lowest in the semi-humid zone (7.22 mm). Leaf width peaked in the very humid (4.17 mm) and arid (4.11 mm) zones, while petiole length was highest in the sub-humid zone (1.34 mm). Leaf area was greatest in the Mediterranean (29.85 cm²) and very humid (28.44 cm²) zones. Maximum fresh leaf weight was recorded in the very humid zone (0.62 g), and maximum dry leaf weight in the semi-arid zone (0.41 g). Special leaf dry weight was highest in the semi-arid zone (0.167 g cm⁻²) and lowest in the Mediterranean zone (0.092 g cm⁻²). Leaf moisture content was highest in the Mediterranean (46.39%) and very humid (44.36%) zones and lowest in the semi-arid zone (25.54%). Leaf water content (0.28 %) and relative leaf water content (36.95%) peaked in the very humid zone. Correlation analysis revealed that most traits were positively and significantly correlated across all climatic zones, except for petiole length in the semi-arid zone.

Conclusion: The findings from the present research indicate that climatic variation leads to significant changes in the leaf morphological traits. Furthermore, these traits tend to function as a coordinated network, reflecting plant adaptive strategies in response to differing environmental conditions.

کلیدواژه‌ها [English]

  • Leaf structural traits
  • Climatic variability؛ Plant adaptation؛ Persian oak (Quercus brantii)
  1.  Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., and Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature. 428: 821–827.

    2.Bjorkman, A., Myers-Smith, I., Elmendorf, S., Normand, S., Rüger, N., & Beck, P., et al. (2018). Plant functional trait change across a warming tundra biome. Nature. 562: 57–62.

    3.Yang, L., Zhao, H., Zuo, Z., Li, X., Yu, D., & Wang, Z. (2021). Generality and shifts in leaf trait relationships between alpine aquatic and terrestrial herbaceous plants on the Tibetan Plateau. Frontiers in Ecology and Evolution. 9: 706237.

    1. Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., & Jia, W. (2020). Spatiotemporal variation in leaf size and shape in response to climate. J. of Plant Ecology. 13: 87–96.
    2. Song, L.L., Tian, Q., Li, G., Li, Z.X., Liu, X., & Gui, J., et al. (2022). Variation in characteristics of leaf functional traits of alpine vegetation in the Three-River headwaters region. Chinese Ecological Indicators. 145: 109557.
    3. Li, Y., Reich, P.B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B.S., Xu, X., Li, Y., & Zou, D., et al. (2020). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters. 23: 1003–1013.
    4. Li, X., Song, X., Zhao, J., Lu, H., Qian, C., & Zhao, X. (2021). Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecology and Evolution. 11: 14042–14055.
    5. Zhang, Z., Sun, J., Liu, M., Shang, H., Wang, J., & Wang, J., et al. (2022). Context-dependency in relationships between herbaceous plant leaf traits and abiotic factors. Frontiers in Plant Science. 13: 757077.

     Everingham, S.E., Offord, C.A., Sabot, M.E.B., & Moles, A.T. (2021). Time-traveling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology. 102: 3. e03272.

    1. Moles, A.T., et al. (2014). Which is a better predictor of plant traits: Temperature or precipitation? J. of Vegetation Science. 25: 5. 1167–1180.
    2. Henn, J.J., Buzzard, V., Enquist, B.J., Halbritter, A.H., Klanderud, K., Maitner, B.S., Michaletz, S.T., Pötsch, C., Seltzer, L., Telford, R.J., Yang, Y., Zhang, L., & Vandvik, V. (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science. 9:1548.
    3. Tserej, O., & Feeley, K.J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica. 53: 868–878.
    4. Bhusal, N., Lee, M., Han, A.R., Han, A., & Kim, H.S. (2020). Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management. 465: 118099.
    5. Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Diaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., Leishman, M.R., Niinemets, Ü., Reich, P.B., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science. 357: 6354. 917–921.
    6. Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., & Adams, J.M., et al. (2011). Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist. 190: 724–739.

     Chen, W.Y., Su, T., Jia, L. B., & Zhou, Z.K. (2019). The relationship between leaf physiognomy and climate based on a large modern dataset: Implications for palaeoclimate reconstructions in China. Palaeogeography, Palaeoclimatology, Palaeoecology. 527:1–13.

    1. Li, Y., Wang, Z., Xu, X., Han, W., Wang, Q., & Zou, D. (2016). Leaf margin analysis of Chinese woody plants and the constraints on its application to palaeoclimatic reconstruction. Global Ecology and Biogeography. 25: 1401–1415.
    2. Hassanzad-Navroodi, I., Zarkami, R., Basati, M., & Mohammadi-Limaei, S. (2015). Quantitative and qualitative characteristics of Persian oak along altitudinal gradation and gradient (Case study: Ilam province, Iran). J. of Forest Science. 61: 7. 297–305.
    3. Azizi, K., Naji, H., Hosseinian Khoshroo, H., & Heidari, M. (2020). Effects of altitude and season on physiological characteristics of Persian oak (Quercus brantii Lindl.) leaves in the Zagros forests (Case study: Ilam). Plant Process and Function. 9: 35. 101–114.
    4. Everingham, S.E., Offord, C.A., Sabot, M.E.B., & Moles, A.T. (2023). Leaf morphological traits show greater responses to changes in climate than leaf physiological traits and gas exchange variables. Ecology and Evolution. 14: e10941.
    5. Soheili, F., Heydari, M., Woodward, S., & Naji, H.R. (2023a). Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: Morphological and anatomical traits. Scientific Reports. 13: 3580.
    6. Soheili, F., Heydari, M., Woodward, S., Abdul-Hamid, H., & Naji, H.R. (2023b). Adaptive plasticity of morphological and anatomical traits of Brant’s oak (Quercus brantii Lindl.) leaves under different climates and elevation gradients. Forest Science and Technology. https://doi.org/10.1080/21580103.2023.2182369
    7. de Martonne, E. (1926). L'indice d'aridité. Bulletin de l'Association de Géographes Français. 3: 9. 3–5.
    8. Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2013). Forests of Iran. Springer. https://doi.org/10.1007/978-94-007-7371-4
    9. Kiani, M., Hasan Lashkari, H., & Ghaemi, H. (2019). The effect of Zagros Mountains on rainfall changes of Sudanese low-pressure system in western Iran. Modeling Earth Systems and Environment. 5: 1769–1779.
    10. Gebremedhin, M.A., Kahsay, G.H., & Fanta, H.G. (2018). Assessment of spatial distribution of aridity indices in Raya Valley, northern Ethiopia. Applied Water Science. 8: 8. 1–8.
    11. Hadi, S.J., & Tombul, M. (2018). Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J. of the Indian Society of Remote Sensing. 46: 7. 1187–1199.
    12. Lam, K.C., Bryant, R.G., & Wainright, J. (2015). Application of spatial interpolation method for estimating the spatial variability of rainfall in semiarid New Mexico, USA. Mediterranean J. of Social Sciences. 6: 4. 108.
    13. Cooper, R.T. (2019). Projection of future precipitation extremes across the Bangkok metropolitan region. Heliyon. 5: 5. e01678.
    14. 30. Garnier, E., and Laurent, G. (1994). Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytologist. 128: 4. 725–736.
    15. Barr, H.D., & Weatherley, P.E. (1962). A reexamination of the relative turgidity technique for estimating water deficit in leaves. Australian J. of Biological Sciences. 15: 413–428.
    16. Tor-ngern, P., Chart-asa, C., Chanthorn, W., Rodtassana, C., Yampum, S., Unawong, W., Nathalang, A., Brockelman, W., Srinoppawan, K., & Chen, Y., et al. (2021). Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest. Forest Ecology and Management. 489: 119101.
    17. Brooker, R., Brown, L.K., George, T.S., Pakeman, R.J., Palmer, S., Ramsay, L., Schöb, C., Schurch, N., & Wilkinson, M.J. (2022). Active and adaptive plasticity in a changing climate. Trends in Plant Science. 27: 7. 717-728.
    18. Li, Y., Reich, P.B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B.S., Xu, X., Li, Y., Zou, D., Tan, Z.H., Su, X., Tang, Z., Guo, Q., Feng, X., Enquist, B.J., Wang, Z., & Morin, X. (2020b). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters. 23: 6. 1003–1013.
    19. Diaz, S., Cabido, M., & Casanoves, F. (1998). Plant functional traits and environmental filters at a regional scale. J. of Vegetation Science. 9: 113–122.
    20. Costa-Saura, J.M., Martínez-Vilalta, J., Trabucco, A., Spano, D., & Mereu, S. (2016). Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspectives in Plant Ecology, Evolution and Systematics. 21: 23–30.
    21. Guittar, J., Goldberg, D., Klanderud, K., Telford, R. J., & Vandvik, V. (2016). Can trait patterns along gradients predict plant community responses to climate change? Ecology. 97: 10. 2791–2801.
    22. Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J., Kaspari, M., Helliker, B.R., & Enquist, B.J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants. 2: 1–9.
    23. Niinemets, Ü., & Fleck, S. (2002). Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia. 132: 21–33.
    24. Puglielli, G., Crescente, M.F., Frattaroli, A.R., & Gratani, L. (2015). Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): Analysis of morphological, anatomical and physiological leaf traits. Annales Botanici Fennici. 52: 135–143.
    25. Niklas, K.J., Cobb, E.D., Niinemets, Ü., Reich, P.B., Sellin, A., Shipley, B., & Wright, I.J. (2007). ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences USA. 104: 8891–8896.
    26. Pan, S., Liu, C., Zhang, W.P., Xu, S.S., Wang, N., & Li, Y., et al. (2013). The scaling relationships between leaf mass and leaf area of vascular plant species change with altitude. PLoS ONE. 8: e76872.

    43.Sun, J., Fan, R.R., Niklas, K.J., Zhong, Q.L., Yang, F.C., & Li, M., et al. (2017). “Diminishing returns” in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos. Southeast China. American J. of Botany. 104: 993–998.

    1. Mclean, E.H., Prober, S.M., Stock, W.D., Steane, D.A., Potts, B.M., Vaillancourt, R.E., & Byrne, M. (2014). Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment. 37: 1440–1451.

     

    1. Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge University Press.
    2. Kergoat, L. (1998). A model for hydrological equilibrium of leaf area index on a global scale. J. of Hydrology. 212: 268–286.
    3. Smith, W.K., Vogelmann, T.C., DeLucia, E.H., Bell, D.T., & Shepherd, K.A. (1997). Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide? BioScience. 47: 785–793.

     

    1. von Arx, G., Archer, S.R., & Hughes, M.K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany. 109: 1091–1100.

     

    1. de la Riva, E.G., Olmo, M., Poorter, H., Ubera, J.L., & Villar, R. (2016). Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS ONE. 11: 2. e0148788.
    2. Dawson, T.E., and Goldsmith, G.R. The value of wet leaves. New Phytol. 2018. 219: 1156–1169.
    3. Huang, W.W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J.L., & Shi, P.J. (2019a). Leaf fresh weight versus dry weight: which is better for describing scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests. 10: 256.

     

    1. Huang, W.W., Reddy, G.V.P., Li, Y.Y., Larsen, J.B., & Shi, P.J. (2020). Increase in absolute leaf water content tends to keep pace with that of leaf dry mass: Evidence from bamboo plants. Symmetry. 12: 1345.
    2. Wang, R.M., He, N.P., Li, S.G., Xu, L., & Li, M.X. (2021). Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: Evidence from three comparative transects. Scientific Reports. 11: 9281.
    3. Damián, X., Fornoni, J., Domínguez, C.A., & Boege, K. (2018). Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Functional Ecology, 32, 234–246.

     

    1. Zhu, K., Wang, A., Wu, J., Yuan, F., Guan, D., Jin, C., Zhang, Y., & Gong, C. (2020). Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Scientific Reports. 10: 10038.
    2. Mao, Q., Lu, X., Mo, H., Gundersen, P., & Mo, J. (2018). Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment. Pp: 610–611, Pp: 555–562.
    3. Liu, N., Zhang, S., Huang, Y., Wang, J., & Cai, H. (2020). Canopy and understory additions of nitrogen change the chemical composition, construction cost, and payback time of dominant woody species in an evergreen broadleaved forest. Science of the Total Environment. 727: 138738.
    4. Haghighatdoust, A., Azadfar, D. & Shahriyari, B. (2023). Changes in the geometrical morphology of Fagus orientalis leaves in the altitudinal gradient. J. of Wood and Forest Science and Technology.30: 1. 45-65. doi: 10.22069/jwfst.2023.20740.1990.
    5. Farokhi, N., AZADFAR, D., and Saeedi, Z. (2024). A comparison of physiological and morphological responses of Populus deltoides clones to different Watering Regimes. J. of Wood and Forest Science and Technology31: 1. 63-93. doi: 10.22069/jwfst.2024.22026.2051
    6. Gorn´e, L.D., Díaz, S., Minden, V., Onoda, Y., Kramer, K., Muir, C., Michaletz, S.T., Lavorel, S., Sharpe, J., Jansen, S., Slot, M., Chacon, E., & Boenisch, G. (2022). The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments. Annals of Botany. 129: 709–722.
    7. Gonzalez-Rodriguez, D., Cournède, P.H., & de Langre, E. (2016). Turgidity-dependent petiole flexibility enables efficient water use by a tree subjected to water stress. J. of Theoretical Biology. 398: 7. 20–31.