1.Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science. 38(10-11), 1629-1652.
2.Salimi Bajestani, M. S., Kiani, F., Ebrahimi, S., Malekzadeh, E., & Tatari, A. (2025). Effect of bentonite/alginate/ nanocellulose composites on soil and water loss: A response surface methodology (RSM)-based optimization approach. International Journal of Biological Macromolecules. 140815.
3.Gulzar, S., Tagrida, M., Nilsuwan, K., Prodpran, T., & Benjakul, S. (2022). Electrospinning of gelatin/chitosan nanofibers incorporated with tannic acid and chitooligosaccharides on polylactic acid film: Characteristics and bioactivities. Food Hydrocolloids. 133, 107916.
4.Salimi Bajestani, M. S., Kiani, F., Ebrahimi, S., Malekzadeh, E., & Tatari, A. (2025). Effects of bentonite/sodium alginate/nanocellulose composites on soil properties and their biodegradability over time. Scientific Reports. 15(1), 10596.
5.Sangwan, A., Malik, P., Gupta, R., Ameta, R. K., & Mukherjee, T. K.
(2021). Nanocomposites: Preparation, Characterization, and Applications. In Nanotechnology (pp. 201-247). Jenny Stanford Publishing.
6.Norizan, M. N., Shazleen, S. S., Alias, A. H., Sabaruddin, F. A., Asyraf, M. R. M., Zainudin, E. S., ... & Norrrahim, M. N. F. (2022). Nanocellulose- based nanocomposites for sustainable applications: A review. Nanomaterials. 12(19), 3483.
7.Malekzadeh, E., Tatari, A., & Dehghani Firouzabadi, M. (2023). Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/ nanofibrillated lignocellulose (CS/NFLC) films. Carbohydrate Polymers. 309, 120699.
8.Malekzadeh, E., Tatari, A., & Dehghani Firouzabadi, M. (2024). Effects of biodegradation of starch-nanocellulose films incorporated with black tea extract on soil quality. Scientific Reports. 14(1), 18817.
9.Azeredo, H. M., Mattoso, L. H. C., Avena‐Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., & McHugh, T. H. (2010). Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science. 75(1), 1-7.
10.Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters. 17(4), 1667-1692.
11.Cazón, P., & Vázquez, M. (2019). Applications of chitosan as food packaging materials. Sustainable agriculture reviews 36: Chitin and chitosan: applications in food, agriculture, pharmacy, medicine and wastewater treatment. 81-123.
12.Szymańska-Chargot, M., Chylińska, M., Pertile, G., Pieczywek, P. M., Cieślak, K. J., Zdunek, A., & Frąc, M. (2019). Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film. Cellulose. 26, 9613-9629.
13.Kong, S., Bai, Y., Wang, L., Liu, X., & Wang, S. (2017). Assembled chitosan-nanocellulose paper and molecular dynamics simulation. Journal of Biobased Materials and Bioenergy. 11(6), 533-542.
14.Xue, M., Wen, Z., Huang, R., Chai, X., Li, W., Chen, C., & Chen, H. (2022). Preparation of coated paper reinforced by a blend of anionic-starch-based nanocellulose/chitosan and its properties. RSC Advances. 12(35), 22402-22409.
15.Azeez, S., & Shenbagaraman, R. (2025). Fourier transform infrared spectroscopy in the characterization of bionanocomposites. In Characterization Techniques in Bionanocomposites,
209-227. Woodhead Publishing.
16.Sai, H., Fu, R., Xing, L., Xiang, J., Li, Z., Li, F., & Zhang, T. (2015). Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Applied Materials & Interfaces. 7(13), 7373-7381.
17.Ahmed, S., & Ikram, S. (Eds.). (2017). Chitosan: derivatives, composites and applications. John Wiley & Sons.
18.Kadir, M. F. Z., Aspanut, Z., Majid,
S. R., & Arof, A. K. (2011). FTIR studies of plasticized poly (vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
78(3), 1068-1074.
19.Yousefi, H., Faezipour, M., Nishino, T., Shakeri, A., & Ebrahimi, G. (2011). All-cellulose composite and nanocomposite made from partially dissolved micro-and nanofibers of canola straw. Polymer Journal. 43(6), 559-564.
20.Izze, S., Yousefi, H., Mashkour, M., & Rasouli, D. (2018). Comparative study on the properties of nanopapers prepared from cellulose and chitin nanofibers. Journal of Wood and Forest Science and Technology. 25(3), 61-72. [In Persian]
21.Yousefi, H., Mashkour, M., & Yousefi, R. (2015). Direct solvent nanowelding of cellulose fibers to make all cellulose nanocomposite. Cellulose. 22, 1189-1200.
22.Iwamoto, S., Nakagaito, A. N., & Yano, H. J. A. P. A. (2007). Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A. 89, 461-466.
23.Yousefi, H., Faezipour, M., Hedjazi, S., Mousavi, M. M., Azusa, Y., & Heidari, A. H. (2013). Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products. 43, 732-737.
24.Martínez‐Camacho, A. P., Cortez‐Rocha, M. O., Castillo‐Ortega, M. M., Burgos‐Hernández, A., Ezquerra‐Brauer, J. M., & Plascencia‐Jatomea, M. (2011). Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer International. 60(12), 1663-1669.
25.Nikolic, P., & Mudgil, P. (2023). The cell wall, cell membrane, and virulence factors of Staphylococcus aureus and their role in antibiotic resistance. Microorganisms. 11(2), 259.
26.Wang, M., Buist, G., & van Dijl, J. M. (2022). Staphylococcus aureus cell wall maintenance–the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiology Reviews. 46(5), fuac025.
27.Denyer, S. P., & Maillard, J. Y. (2002). Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria. Journal of Applied Microbiology. 92(s1), 35S-45S.
28.Ebbensgaard, A., Mordhorst, H., Aarestrup, F. M., & Hansen, E. B. (2018). The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Frontiers in Microbiology. 9, 2153.
29.Goel, S., & Bano, Y. (2025). Chitosan-based nanofibrous membranes for antibacterial filter applications. In Antimicrobial Materials and Coatings, 425-447. Woodhead Publishing.
30.Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology. 144(1), 51-63.
31.Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules. 26(23), 7136.