1.Leon, M., Cornejo, G., Calderón, M., González-Carrión, E., & Florez, H. (2022). Effect of deforestation on climate change: A co-Integration and causality approach with time series. Sustainability. 14, 11303.
2.Teulieres, C., & Marque, C. (2007). Eucalyptus. biotechnology in agriculture and forestry, 60. In transgenic Crops V (ed. by Pua, E.C., & Davey, M.R.) Springer-Verlag Berlin Heidelberg.
3.Messier, C., Bauhus, J., & Sousa-Silva, R. (2021). For the sake of resilience and multifunctionality, let’s diversify planted forests. Conservation Letters. e12829.
4.Goncalves, J. L. M., Stape, J. L., Laclau, J. P., Bouillet, J. P., & Ranger, J. (2008). Assessing the effects of early silvicultural management on long-term site productivity of fast growing eucalypt plantations: the Brazilian experience. Southern Forests: a Journal of Forest Science. 70 (2), 105-118.
5.Fernandez, J. Q. P., Dias, L. E., Barros, N. F., Novais, R. F., & Moraes, E. J. (2000). Productivity of Eucalyptus camaldulensis affected by rate and placement of two phosphorus fertilizers to a Brazilian Oxisol. Forest Ecology and Management. 127, 93-102.
6.Foltran, E. C., de Moraes Goncalves, J. L., Rocha, J. H. T., Bazani, J. H., Valduga, G. R., Rodrigues, M., Pavinato, P., Erro, J., & Garcia-Mina, J. M. (2019). Phosphorus pool responses under different P inorganic fertilizers for a
Eucalyptus plantation in a loamy Oxisol.
Forest Ecology and Management.
435, 170-179.
7.Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2018). Fertilizers and their contaminants in soils, surface and groundwater. In: Dominick, A., DellaSala, & Michael, I. Goldstein (eds.) The Encyclopedia of the Anthropocene. 5, 225-240.
8.Chu, S., Xian, L., Zhao, N., Lai, C., Yang, W., Wang, J., Long, M., Liao, D., Ouyang, J., Wang, Z., Jacobs, D. F., & Zeng, S. (2023). Combined addition of bagasse and zeolite stabilizes potentially toxic elements in sewage sludge compost and improves
Eucalyptus urophylla seedling growth.
Forest Ecology and Management. 539, 121003.
9.Hackman, J., Ozyhar, T., Chien, S. H., Hilty, F., Woodley, A., & Cook, R. L. (2022). Evaluation of synthetic hydroxyapatite as a potential phosphorus fertilizer for application in Forest plantations. Forest Science and Technology. 18 (3), 127-134.
10.Chen, M., Li, Z., Huang, P., Li, X., Qu, J., Yuan, W., & Zhang, Q. (2018). Mechanochemical transformation of apatite to phosphoric slow-release fertilizer and soluble phosphate.
Process Safety and Environmental Protection.
114, 91-96.
11.Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere. 184, 594-600.
12.Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Ansari, A. A., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016). Piriformospora indica: Potential and significance in plant stress tolerance. Frontiers in Microbiology. 7, 332.
13.Lukiwatid, D. R., & Simanungkalit, R. D. M. (2002). Dry matter yield, N and P uptake of soybean with Glomus manihotis and Bradyrhizobium japonicum. In timetable of international meeting on direct application of phosphorus rock and related technology–latest developments and practical experiences. International fertilizer development center muscle shoals (IFDC) USA Kuala Lumpur, Malaysia, 16-20 July.
14.Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology. 62, 227-250.
15.Eldhuse, T. D., Swensen, B., Wickstrøm, T., & Gro., W. (2007). Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. Journal of Plant Nutrition and Soil Science. 170, 645-648.
16.Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology. 28, 897-906.
17.Sardabi, H., Rahmani, A., Hamze, B., Assareh, M. H., & Ghorany, M. (2010). Impact of different Eucalypt species on forest soil properties in Guilan province. Iranian Journal of Forest and Poplar Research. 18, 1. [In Persian]
18.Hazem, M., Dabrowski, P., Cetner Magdalena, D., Samborska Izabela A., Lukasik, I., Brestic, M., Zivcak, M., Tomasz, H., Mojski, J., Kociel, H., & Panchal Balaji, M. (2017). A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition. 40 (7), 1024-1034.
19.Gupta, P. K. (2004). Soil, plant, water and fertilizer analysis. Agrobios (India). 438p.
20.Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations. 38, 2.
21.Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington.
22.Tabatabai, M. A., Weave, S., Angle, P., Bottomley, D., Bezdicek, S., Smith, A., Tabatabai R. W., & Wollum, A. (1994). Soil enzyme. Pp: 775-834. In: Weaver, R. W. et al., (Eds.) Methods in soil analysis, Part 2: Microbiological and biochemical properties. Soil Science Society of America, Madison, WI.
23.Jenkinson, D. S., & Powelson, D. S. (1976). The effect of biocidal treatments of metabolism in soil: A method for measuring soil biomass. Soil Biology and Biochemistry. 8, 209-213.
24.Brookes, P. C., Powlson, D. S., & Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry. 14 (4), 319-329.
25.Kuo, S. (1996). Phosphorus. In: Sparks D.L. (ed.) Methods of soil analysis. Agronomy 9. ASA-SSSA, Madison, WI.
26.Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes, in: soil phosphorus in action. In: Bunemann, E.K. & Oberson, A.E.F. (Ed.). Biological Process in Soil Phosphorus Cycling. Heidelberg: Springer, pp. 215-243.
27.Zalaghi R., & Safari-Sinegani, A. A. (2014). The importance of different forms of Pb on diminishing biological activities in a calcareous soil. Chemistry and Ecology. 30 (5), 446-462.
28.Jamili, S., Zalaghi, R., & Mehdi Khanlou, K. (2024). Changes in microRNAs expression of flax (Linum usitatissimum L.) planted in a cadmium-contaminated soil following the inoculation with root symbiotic fungi. International. Journal of Phytoremediation. 26 (8), 1221-1230.
29.Liu, L., Gao, Z., Yang, Y., Gao, Y., Mahmood, M., Jiao, H., Wang, Z., & Liu, J. (2023). Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agriculture, Ecosystems & Environment. 342, 108226.
30.Liu, J., Ma, Q., Hui, X., Ran, J., Ma, Q., Wang, X., & Wang, Z. (2020). Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biology and Biochemistry. 149, 107918.
31.Shivakumara, M. N., Krishna Murthy, R., Subbarayappa, T. C., Chamegowda, M. N., Thimmegowda, C. T., & Muthuraju, R. (2019). Effect of Zeolite and Fertilizer Application on Soil Microbial Biomass and Enzyme Activity in Finger Millet. International Journal of Current Microbiology and Applied Sciences. 8 (11), 1939-1957.
32.Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., & Reddy, S. P. P. (2023). Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants. 12173102.
33.Diaz-Urbano, M., Goicoechea, N., Velasco, P., & Poveda, J. (2023). Development of agricultural bio-inoculants based on mycorrhizal fungi and endophytic filamentous fungi: Co-inoculants for improve plant-physiological responses in sustainable agriculture.
Biological Control.
182,
105223.
34.Yang, L., Zou, Y. N., Tian, Z. H., Wu, Q. S., & Kuca, K. (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae. 277, 109815.
35.Mohandas, S. (2012). Arbuscular mycorrhizal fungi benefit mango (Mangifera indica L.) plant growth in the field. Scientia Horticulturae. 143, 43-48.
36.Sahodaran, N. K., Arun, A. K., & Ray, J.G. (2019). Native arbuscular mycorrhizal fungal isolates (Funneliformis mosseae and Glomus microcarpum) improve plant height and nutritional status of banana plants. Experimental Agriculture. 55, 924-933.
37.Campos, P. M. S., Borie, F., Cornejo, P., Meier, S., Lopez-Raez, J. A., Lopez-Garcia, A., & Seguel, A. (2021). Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions. Journal of Plant Physiology. 256, 153297.
38.Hou, L., Zhang, X., & Feng, G. (2021). Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China. Scientific Reports. 11, 1100.
39.Zheng, J., Chen, T., Chi, D., Xia, G., Wu, Q., Liu, G., Chen, W., Meng, W., Chen, Y., & Siddique, K. H. M. (2019). Influence of Zeolite and Phosphorus Applications on Water Use, P Uptake and Yield in Rice under Different Irrigation Managements. Agronomy.9L: 537.
40.Aainaa, N., Haruna, H., Ahmed, O., & AbMajid, N. M. (2018) Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. Plos one.13, 9. e0204401.
41.Lancellotti, I., Toschi, T., & Passaglia, F. (2014). Release of agronomical nutrient from zeolitite substrate containing phosphatic waste. Chemistry in a sustainable society. 21, 13237-13242.
42.Sugito, T., Yoshida, K., Takebe, M., Shinano, T., & Toyota, K. (2010) Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. Soil Science and Plant Nutrition. 56, 390-398.
43.Ayaga, G., Todd, A., & Brookes, P. C. (2006). Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biology and Biochemistry. 38, 81-90.
44.Saini, V. K., Bhandari, S. C., & Tarafdar, J. C. (2004). Comparison of crop yield, soil microbial biomass C, N, and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crops Research. 89, 39-47.
45.Chen, G. C., He, Z. L., & Huang, C. Y. (2000). Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils. Communications in Soil Science and Plant Analysis. 31 (5-6), 655-667.
46.Hoseini, S. S., Zalaghi, R., Enayatizamir, N., & Feizian, M. (2024). The effect of sewage sludge application on soil phosphatase activity and nutrients uptake by maize plant inoculated with symbiotic fungi. Journal of Soil Management and Sustainable Production. 13 (14), 97-114. [In Persian]
47.Krutilina, V. S., Polyanskaya, S. M., Goncharova, N. A., & Letchamo, W. (2000). Effects of zeolite and phosphogypsum on growth, photosynthesis and uptake of Sr, Ca and Cd by barley and corn seedlings. Journal of Environmental Science and Health, Part A. 35 (1), 15-29.
48.Karami, S., Hadi, H., Tajbaksh, M., & Modarres-Sanavy, S. A. M. (2020). Effect of zeolite on nitrogen use efficiency and physiological and biomass traits of amaranth (Amaranthus hypochondriacus) under water-deficit stress conditions. Journal of Soil Science and Plant Nutrition. 20, 1427-1441.
49.Maghsoodi, M. R., Ghodszad, L., & Asgari Lajayer, B. (2020). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology & Innovation. 19, 100869.
50.El-Sherbeny, T. M. S., Mousa, A. M., & El-Sayed R. (2022). Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences. 29 (1), 331-338.