زنجیره زیست توده- انرژی و بهینه سازی هزینه‌های شبکه حمل و نقل

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

استادیار، گروه جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

سابقه و هدف: زیست‌توده لیگنوسلولزی به عنوان یکی از آلترناتیوهای نوید بخش برای تولید سوخت‌های زیستی و مقابله با تغییرات اقلیمی مطرح است. بخش عمده زیست توده حاصل از فعالیت‌های کشاورزی در عرصه یا رهاشده و یا سوزانده می‌شود. نتیجه این عمل، برجای گذاشتن تأثیرات نامطلوب بر روی محیط‌زیست است، اما جمع‌آوری هدفمند آن می‌تواند هم اثرات نامطلوب محیطی را کاهش داده و هم بخشی از نیاز کشور به استفاده از انرژی‌های فسیلی را مرتفع سازد. هدف تحقیق حاضر، پتانسیل‌یابی منابع زیست‌توده حاصل از فعالیت‌های کشاورزی به عنوان یک منبع پایدار جهت تولید انرژی‌های تجدیدپذیر و محاسبه هزینه حمل ونقل آن در قالب یک طرح پایلوت در استان‌گلستان است.
مواد و روش‌ها: بدین منظور، ابتدا نقشه کاربری اراضی و توزیع پراکنش مکانی منابع عرضه‌ زیست‌توده از 4 کشت‌ عمده (گندم، سویا، برنج و کلزا) با استفاده از پردازش‌ تصاویر ماهواره‌ای (سنتینل-2 و لندست 8) تهیه شد. حجم زیست‌توده قابل عرضه از هر یک از کشت‌ها به واحد انرژی (کیلووات ساعت) برآورد گردید. در مرحله بعد، یک مدل بهینه‌سازی جهت طراحی شبکه زنجیره تامین زیست‌توده-انرژی در سطح منطقه مورد مطالعه توسعه داده شد.
نتایج: نتایج حاصل از پردازش تصاویر ماهواره‌ای، صحت کلی و ضریب کاپا طبقه‌بندی برای محصول گندم و کلزا با استفاده از تصاویر سنتینل معادل 82% و 74/0 به ترتیب و برای محصول سویا و برنج با استفاده از تصاویر لندست معادل 76% و 63/0به ترتیب بوده است. نتایج برآورد مساحت تعداد 84104 مزرعه (بالای 2 هکتار) با مساحت 468 هزار هکتار را شناسایی نمود که با آمار ارائه شده توسط جهاد کشاورزی اریبی 11% را نشان می‌دهد. مقدار زیست توده قابل برداشت از این مزارع معادل 8/3 میلیون کیلووات انرژی در سناریو خوشبینانه بوده است. نتایج مدل بهینه‌سازی در محل تلاقی هزینه‌ ثابت و هزینه متغیر حمل ونقل احداث 3 پالایشگاه زیستی برای فرآوری زیست‌توده و تبدیل به انرژی الکتریسیته کافی است. در این محل، هزینه حمل ونقل معادل 222 میلیون دلار، هزینه متغیر 1599 میلیون دلار و مجموع هزینه‌ها معادل 1821 میلیون دلار بوده است. در سناریو بهینه، حداکثر فاصله حمل ونقل به ازای هر سایت 81 کیلومتر و متوسط آن 27 کیلومتر است که به اندازه 74% نسبت به سناریو 1 (یک سایت در کل عرصه) و 34% نسبت به سناریو 2 (دو سایت در کل عرصه) کاهش یافته بود.
نتیجه‌گیری: انجام چنین تحقیقاتی به منظور تنوع بخشی به منابع انرژی، کاهش وابستگی به سوخت‌های فسیلی در کشور ضروری بوده و در این راه استفاده از تصاویر ماهواره‌ای سنتینل-2 به عنوان ابزاری ارزان و مناسب در پتانسیل سنجی منابع لیگنوسلولزی ضروری حائز اهمیت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biomass to bioenergy value-chain and optimizing costs of transportation network

نویسنده [English]

  • Sattar Ezzati
Assistant Professor, Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Background and Purpose: Lignocellulosic biomass, a promising renewable resource, has gained attraction as a potential alternative for biofuel production and climate change mitigation. Agricultural practices often generate significant quantities of lignocellulosic residues (e.g., crop stalks), which are frequently abandoned or burned, leading to adverse environmental impacts. Wisely collection and conversion of these residues into bioenergy could offer a twofold benefit: reducing environmental harm and partially displacing fossil fuels. The study aimed at evaluating the potential of lignocellulosic biomass from agricultural activities in Golestān province as a sustainable source for renewable energy production; and estimating the transportation costs associated with the biomass feedstock within the context of a pilot project.
Materials and methods: To do so, we employed satellite image processing (Sentinel-2 and Landsat 8) to generate land-use maps and identify the spatial distribution of biomass supply sources from four major crops (wheat, soybean, rice, and rapeseed) and estimate the available biomass volume from each crop in energy units (kWh). Subsequently, an optimization model was developed to design a biomass-to-energy supply chain network for the study area.
Results: The overall classification accuracy and kappa coefficient for wheat and rapeseed using Sentinel images were 82% and 0.74, respectively. Soybean and rice classifications using Landsat images achieved 76% and 0.63 accuracy, respectively. Area estimation identified 84,104 farms exceeding 2 ha, encompassing a total area of 468,000 ha. This represents an 11% bias compared to statistics provided by the Iran's Ministry of Agriculture organization for the same period. The optimistic scenario suggests a potential harvest of 3.8 million kWh of energy from the identified farms. The optimization model, considering both fixed and variable transportation costs, determined that locating three biorefineries would be sufficient to process the biomass and generate electricity. Transportation costs for this scenario were: US$222 million fixed cost, US$1.599 billion variable cost, and a total cost of US$1.821 billion. The optimal scenario also minimized transportation distances, with a maximum on-site distance of 81 km and an average distance of 27 km. These distances represent a significant reduction compared to single-site (74% decrease) and two-site (34% decrease) scenarios.
Conclusions: The results highlight the potential of utilizing agricultural biomass for biofuel production in Golestān province. Developing a diversified energy portfolio that reduces dependence on fossil fuels and mitigates their environmental impacts necessitates further research in this area.The results highlight the potential of utilizing agricultural biomass for biofuel production in Golestān province. Developing a diversified energy portfolio that reduces dependence on fossil fuels and mitigates their environmental impacts necessitates further research in this area.

کلیدواژه‌ها [English]

  • Residue biomass
  • modeling
  • transportation
  • remote sensing
  • optimization
1.Rentizelas, A. A., Tolis, A. J., & Tatsiopoulos, I. P. (2009). Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews. 13 (4), 887-894.
2.Cambero, C., Sowlati, T., & Pavel, M. (2016). Economic and life cycle environmental optimization of forest-based biorefinery supply chains for bioenergy and biofuel production. J. Chemical Engineering Research and Design. 107, 218-235.
3.Gracia, C., Velázquez-Martí, B., & Estornell, J. (2014). An application of the vehicle routing problem to biomass transportation. Biosystems Engineering. 124, 40-52.
4.Magazzino, C., Mele, M., Schneider, N., & Shahbaz, M. (2021). Can biomass energy curtail environmental pollution? A quantum model approach to Germany. J. of Environmental Management. 287, 112293.
5.Sahoo, K., Upadhyay, A., Runge, T., Bergman, R., Puettmann, M., & Bilek, E. (2021). Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. J. Life Cycle Assessment.
26, 189-213.
6.Sahoo, K., Mani, S., Das, L., & Bettinger, P. (2018.) GIS-based assessment of sustainable crop residues for optimal siting of biogas plants. Biomass and Bioenergy. 110, 63-74.
7.Van Holsbeeck, S., & Srivastava, S. K. (2020). Feasibility of locating biomass-to-bioenergy conversion facilities using spatial information technologies: A case study on forest biomass in Queensland, Australia. Biomass and Bioenergy.
139, 105620.
8.IRNA, 2021. XXXXX-Share of renewables in Iran energy mix rising". IRNA English.
9.Solaymani, S. (2021). A review on energy and renewable energy policies in Iran. Sustainability. 13 (13), 7328.
10.Sessions, J., Smith, D., Trippe, K. M., Fried, J. S., Bailey, J. D., Petitmermet, J. H., & Campbell, J. D. (2019). Can biochar link forest restoration with commercial agriculture? Biomass and Bioenergy. 123, 175-185.
11.Nickpour, M., Khalili, M., Pazouki, M., Khalili, M., & Pazouki, M. R. (2014). Iran’s potential to convert biomass into biofuel. In CHEMTECH conference.
12.Azadbackt, M., Safieddin Ardebili, S. M., & Rahmani, M. (2021). Potential for the production of biofuels from agricultural waste, livestock, and slaughterhouse waste in Golestan province, Iran, Biomass Conversion and Biorefinery. pp. 1-11.
13.Kamkar, B., Alizadeh Dehkordi, P., Aalaee Bazkiaee, P., & Abdi, O. (2021). Determination of the compliance of soybean lands with land suitability maps (Case Study: Golestan Province). Agricultural Engineering. 44 (1), 121-139.
14.Kamkar, B., Dashti Marvili, M., & Kazemi, H. (2021). Comparison of vegetation indices in estimating the residue biomass of spring and autumn crops (Watersheds in the southwest of Golestan province). J. Water and Soil Conservation. 27 (6), 121-136.
15.Bascietto, M., Sperandio, G., & Bajocco, S. (2020). Efficient estimation of biomass from residual agroforestry, ISPRS J. Geo-Information. 9 (1), 21.
16.Ezzati, S., & Mohammadi, J. (2024). A decision support model for planning of spatial large-extent biomass to bioenergy procurement network. Bioresource Technology Reports. 27, 101886.
17.Saadat, H., Adamowski, J., Bonnell, R., Sharifi, F., Namdar, M., & Ale-Ebrahim, S. (2011). Land use and land cover classification over a large area in Iran based on single-date analysis of satellite imagery. ISPRS J. Photogrammetry and Remote Sensing. 66 (5), 608-619.
18.Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment. 122, 11-21.
19.Yaghouti, H., Pazira, E., Amiri, E., & Masihabadi, M. H. (2018). Application of satellite imagery and remote sensing technology to estimate rice yield. J. of Water and Soil Resources Conservation. 7 (3), 55-69.
20.Ayamga, E. A., Kemausuor, F., & Addo, A. (2015). Technical analysis of crop residue biomass energy in an agricultural region of Ghana. Resources Conservation Research. 96, 51-60.
21.Nordin, N. A. M., Zaharudin, Z. A., Maasar, M. A., & Nordin, N. A. (2012). Finding the shortest path of the ambulance routing: Interface of Algorithm using C# programming, In 2012 IEEE symposium on humanities, science and engineering research. 1569-1573. IEEE.
22.ERIA. (2019). ‘Cost analysis of biomass power generation’. In P., Han, Kimura, S. Wongsapai, W., & Achawangku, Y. (eds.). Study on Biomass Supply Chain for Power Generation in Southern Part of Thailand. ERIA Research Project, Report FY2018 no.9, Jakarta: ERIA, pp. 50-56.