تعیین عوامل مؤثر و پیش بینی مکانی وقوع خزش ها و زمین لغزش های کنار جاده ای در جنگل های استان گلستان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ،گروه جنگلداری، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار، گروه جنگلداری، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار، گروه مدیریت مناطق بیابانی، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 دانشیار گروه جنگلداری، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

مقدمه و هدف: خزش‌ها و زمین‌لغزش‌‌ها هر چند در ابعاد کوچک و سطحی اما به‌وفور در مجاورت جاده‌های جنگلی کوهستانی حادث شده و سالانه منجر به وارد آمدن خسارت مالی قابل‌ملاحظه‌ای به ابنیه ‌فنی و راه‌ها می‌شود. هدف اصلی این تحقیق شناسایی مهمترین عوامل مؤثر در وقوع این نوع حرکت‌های توده‌ای کنارجاده‌ای و پیش‌بینی مکانی وقوع آنها در اطراف جاده است.
مواد و روش‌ها: ابتدا بخشی از جاده‌های طرح‌های جنگل‌داری شموشک و چهل‌چای و عرب داغ که دارای اقلیم‌ها و سنگ‌بسترهای متفاوت می‌باشند، پیمایش شده و تمام خزش‌ها و زمین‌لغزش‌ها و وسعت تقریبی آنها توسط GPS ثبت شد. عوامل تاثیرگذار طبیعی شامل شیب دامنه، شکل شیب دامنه، جهت‌های جغرافیایی شیب، زمین‌شناسی، ارتفاع از سطح دریا و شاخص خمیری خاک از طریق جمع‌آوری اسناد موجود و برداشت میدانی و استانداردهای ASTEM و عوامل تأثیرگذار فنی جاده‌های جنگلی شامل شیب طولی، عرض و عمق جوی، ارتفاع و شیب ترانشه‌های خاکبرداری و خاکریزی به‌کمک دستگاه شیب‌سنج و متر برداشت می‌شود. میزان ترافیک نیز از طریق استعلام منطقه‌ای مشخص شد. کلیه این اطلاعات در مدل‌های جنگل تصادفی (RF) وارد شده و سپس بر مبنای ضرایب بدست آمده از اجرای مدل‌ها مهمترین عوامل تأثیرگذار در وقوع خزش‌ها و زمین‌لغزش شناسایی شد. در مرحله بعد، بر مبنای استانداردسازی لایه‌ها و ضرایب بدست آمده، نقشه حساسیت و یا احتمال رویداد خزش و زمین‌لغزش تولید شد.
نتایج: نتایج منحنی ROC بیانگر دقت بالای مدل جنگل تصادفی با کاپا 1 برای زمین لغزش و کاپای 95/0 برای خزش است. بنابراین نتایج حاصل از پهنه‌بندی با درصد بالا با واقعیت زمینی مطابقت دارد. همچنین بر اساس مدل جنگل تصادفی، ارتفاع و شیب ترانشه خاکبرداری به ترتیب بیشترین تأثیر را در وقوع زمین لغزش‌های کنارجاده‌ای مناطق مورد مطالعه داشته‌اند. عرض و عمق جوی کناری نیز به ترتیب بیشترین تأثیر را در وقوع خزش داشتند. از میان عوامل طبیعی، شاخص خمیری خاک و وضعیت زمین‌شناسی منطقه، مؤثرترین عوامل در وقوع زمین‌لغزش‌ها و خزش‌های کنار جاده‌ای بودند. با توجه به نقشه‌های خطر زمین لغزش و خزش، 31 درصد از سطح مناطق مورد مطالعه مستعد زمین‌لغزش و 51 درصد آن مستعد خزش می‌باشد.
نتیجه‌گیری: این مطالعه نشان داد که ابعاد غیراستاندارد جوی کناری که در اثر انباشتگی رسوب و یا فرسایش خندقی ایجاد می‌شود، می‌تواند محرک اصلی خزش خاک باشد. همچنین طراحی و ساخت جاده در اراضی پرشیب منجر به ایجاد ترانشه‌های مرتفع و پرشیب می‌شود که این موضوع غالیاً با پیامدهای ناپایداری و زمین‌لغزش همراه است. این موارد ضرورت طراحی اصولی مسیر هادی و برنامه‌ریزی جامع و دقیق برای اجرای عملیات زهکشی و حفاظت و نگهداشت ترانشه‌های جاده‌های جنگلی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the effective factors and predicting the occurrence of creeps and landslides on the roadside in the forests of Golestan province

نویسندگان [English]

  • Benjamin Matinnia 1
  • Aydin Parsakho 2
  • Mohsen Hosseinalizadeh 3
  • jahangir Mohammadi 4
1 PhD student, Department of Forestry, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Professor, Department of Forestry, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Professor, Department of Desert Areas Management, Faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Associate Professor, Department of Forestry, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Abstract
Introduction and purpose: creeps and landslides, although small and shallow, occur abundantly in the vicinity of mountain forest roads and annually lead to considerable financial damage to technical buildings and roads. The main purpose of this research is to identify the most important factors affecting the occurrence of this type of roadside mass movement and to predict the location of their occurrence around the road.
Materials and methods: First, a part of the roads of Shamushak, Chelchai and Arab Dagh forestry projects, which have different climates and rock-beds, were surveyed and all the creeps and ground Landslides and their approximate extent were recorded by GPS. Natural influencing factors including the slope of the slope, the shape of the slope of the slope, the geographical directions of the slope, geology, height above sea level and the clay index of the soil through the collection of existing documents and field collection and ASTEM standards and the technical influencing factors of forest roads. It includes longitudinal slope, width and depth of air, height and slope of excavation trenches and embankment with the help of inclinometer and meter. The amount of traffic was determined through regional inquiry. All this information was entered in the random forest (RF) models and then based on the coefficients obtained from the implementation of the models, the most important influencing factors in the occurrence of creeps and landslides were identified. In the next step, based on the standardization of the obtained layers and coefficients, a sensitivity map or the probability of creep and landslide events was produced.
Results: The results of the ROC curve show the high accuracy of the random forest model with a kappa of 1 for landslides and a kappa of 0.95 for creep. Therefore, the results of zoning with a high percentage correspond to the ground reality. Also, based on the random forest model, the height and slope of the excavation trench respectively had the greatest effect on the occurrence of roadside landslides in the studied areas. The width and depth of the side air had the greatest effect on the occurrence of creep, respectively. Among the natural factors, the clay index of the soil and the geological condition of the region were the most effective factors in the occurrence of landslides and roadside creeps. According to the landslide and creep risk maps, 31% of the surface of the studied areas is prone to landslides and 51% of it is prone to creep.
Conclusion: This study showed that the non-standard dimensions of the side air caused by sediment accumulation or trench erosion can be the main driver of soil creep. Also, the design and construction of roads in steep lands leads to the creation of high and steep trenches, which is associated with the consequences of instability and landslides. These cases show the necessity of the basic design of the conductor path and comprehensive and accurate planning for the implementation of drainage operations and the protection and maintenance of forest road trenches.

کلیدواژه‌ها [English]

  • mass movement-forest road- excavation trench slope
  • - excavation trench height
  • -random forest model
1.Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., & Tutubalina, O. (2009). Landslides triggered by the Khait earthquake, Tajikistan, and associated loss of life. Engineering Geology, 109, 195-212.
2.Parsakhoo, A., Rostaghi, A. A., Moghadasi, D., Ghezelsefloo, M., & Rezaee Motlagh, A. (2024). Impact of forestry project suspensions on forest road network conditions in the North of Iran (case study: Golestan Province). J. of Wood and Forest Science and Technology. 31 (1), 23-41.
3.Li, M., Wang, H., Chen, J., & Zheng, K. (2024). Assessing landslide susceptibility based on the random forest model
and multi-source heterogeneous data. Ecological Indicators. 158, 111-120.
4.Kaczmarek, L., & Dobak P. (2017). Contemporary overview of soil creep phenomenon. Contemporary Trends in Geoscience. 6 (1), 28-40.
5.Sonoda, M., & Kurashige, Y. (2017). Characteristics of surface soil creep on a forest slope in Japan. Geomorphology. 288, 1-11.
6.Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40 (10), 927-930.
7.Van der Geest, K. (2018). Landslide loss and damage in sindhupalchok district, Nepal: Comparing income groups with implications for compensation and relief. International J. of Disaster Risk Science. 58, 1-10.
8.Zumpano, V., Pisano, L., Malek, Ž., Micu, M., Aucelli, P. P., Rosskopf, C. M., Belteanu, D., & Parise, M. (2018). Economic losses for rural land value due to landslides. Frontiers in Earth Science. 6, 85-97.
9.Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65, 10-20.
10.Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology. 97, 171-191.
11.Le, T. M., Fatahi, B., Disfani, M., & Khabbaz, H. (2015). Analyzing consolidation data to obtain elastic viscoplastic parameters of clay. Geomechanics and Engineering. 8 (4), 559-594.
12.Klarstaghi, A., Habib Nejad, M., & Ahmadi, H. (2016). A study of the occurrence of landslides in connection with land use change and Sari road. Geographical Researches. 62, 81-91.
13.Moon, S. W., Noh, J., Kim, H. S., Kang, S. S., & Seo, Y. S. (2024). Comparison of factors influencing landslide risk near a forest road in Chungju-si, South Korea. Geoenvironmental Disasters. 11 (3), 1-17.
14.Azizi, Z., & Hosseini, A. (2015). Evaluation of slope failure potential in forest roads (Case study: 46th watershed, North of Iran). Iranian J. of Forest and Poplar Research. 23 (3), 573-582.
15.Jadda, M., Shafri, H. Z. M., Mansor, S. B., Sharifikia, M., & Pirasteh, S. )2009). Landslide susceptibility evaluation and factor effect Iran. Natural Hazard. 63 (2), 965-996.
16.Iswar, D., Sashikant, S., Cees, V. W., Alfred, S., & Robert, H. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas, India. Geomorphology. 114, 627-637.
17.Taalab, Kh., Cheng, T., & Zhang, Y. (2018). Mapping landslide susceptibility and types using random forest. Big Earth Data. 2 (2), 159-178.
18.Zhang, Y., Wu, W., Qin, Y., Lin, Z., Zhang, G., Chen, R., Song, Y., Lang, T., Zhou, X., Huangfu, W., Ou, P., Xie, L., Huang, X., Peng, S., & Shao, C. (2020). Mapping landslide hazard risk using random forest algorithm in Guixi, Jiangxi, China. ISPRS International J. of Geo-Information. 9 (11), 695-702.
19.Garaee, P. (2016). Investigating mass movements in order to present a logical risk zoning model in the Lajim Road watershed, master's thesis, Mazandaran University.
20.Komak, M. (2006). A landslide suscepility model using the Analytical Hierarchy Process method and multivariate statistics in peri Alpine Slovenia. Geomorphology. 74, 17-28.
21.Park, S., & kim, J. (2019). Landslide susceptibility mapping based on rendom forest and boosted regression tree models, and a comparison of their performance. Applied Sciences. 9 (5), 942-948.
22.Shirani, K., & Arabameri, A. R. (2015). Landslide Hazard Zonation Using logistic regression method (Case study: Dez-e-Oulia Basin). Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, Isf. Univ. Technol. Isf. Iran. 72, 321-334.
23.Bugday, E., & Akay, E. (2023). Determination of the forest road alignment in landslide-prone areas based on landslide susceptibility map generated by machine learning approaches. Forest Operations: A Tool for Forest Management Flagstaff, Arizona, May 23-25, USA, 15p.
24.Eker, R., & Aydın, A.) 2016). Landslide susceptibility assessment of forest roads. European J. of Forest Engineering. 2 (2), 54-60.