برآورد زی‌توده روی زمینی توده‌های جنگلی دست‌کاشت عرب داغ استان گلستان با استفاده از داده‌های ماهواره‌ای سنتینل 2

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دکتری مدیریت جنگل، اداره کل مدیریت و توسعه جنگل، سوریه.

2 دانشیار ، گروه مدیریت جنگل، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

سابقه و هدف: جنگل‌های‌ دست‌کاشت امروزه یکی از مهم‌ترین منابع ذخیره کربن جنگلی و از عوامل کاهش‌دهنده روند تخریبی عرصه‌های طبیعی هستند. زی‌توده روی زمینی درختان نقش اساسی در مدیریت پایدار جنگل و در کاهش روند گرم شدن کره زمین و یک منبع اطلاعاتی مهم محسوب ‌می‌شود. معادلات آلومتریک ابزاری مهم برای کمی کردن زی‌توده روی زمینی درختان در جنگل‌ها هستند. در سال‌های اخیر، فنون سنجش‌ازدور با استفاده از روش‌های ناپارامتریک مانند الگوریتم رندوم فارست به‌طور گسترده برای برآورد زی‌توده درختان جنگل مورد استفاده قرارگرفته است. در این تحقیق قابلیت داده‌های سنتینل 2 با استفاده از الگوریتم رندوم فارست در برآورد زی‌توده روی زمینی توده‌های جنگلی دست‌کاشت عرب داغ استان گلستان مورد ارزیابی قرار گرفت.

مواد و روش‌ها: در این مطالعه از اطلاعات زی‌توده 180 قطعه‌نمونه دایره‌‌ای به مساحت 400 مترمربع حاصل از روش نمونه‌برداری خوشه‌ای استفاده شد. همچنین مختصات مراکز قطعات نمونه با استفاده از DGPS ثبت شد. زی‌توده روی زمینی قطعات نمونه از معادلات آلومتریک تهیه شده است. در این بررسی از داده‌های سنتینل 2 که پیش‌پردازش رادیومتری و هندسی شده بودند استفاده شد و براساس آن، شاخص‌های مختلف پوشش گیاهی تهیه شد. در اجرای الگوریتم رندوم فارست ارتباط بین مشخصه‌ی زی‌توده به‌عنوان متغیر وابسته و ارزش‌های طیفی شاخص‌های گیاهی تهیه شده به‌عنوان متغیرهای مستقل مورد بررسی قرار گرفت. مدل‌سازی با استفاده از 75 درصد قطعات نمونه (135 قطعه‌نمونه) با استفاده الگوریتم رندوم فارست صورت گرفت وارزیابی برآوردها با استفاده از 25 درصد قطعات نمونه (45 قطعه‌نمونه) انجام شد.
یافته‌ها: نتایج نشان داد که در بین متغیرهای مستقل مورد استفاده شاخص‌ها NDVI و GNDVI دارای بیشترین همبستگی در برآورد زی‌توده روی زمینی را داشتند و الگوریتم رندوم فارست با 310 درخت و 5 پیش‌بینی کننده‌ و درصد مجذور میانگین مربعات خطا 83/35 درصد و ضریب تبیین 51/0 توانسته است که زی‌توده روی زمینی توده‌های دست‌کاشت عرب داغ را برآورد نمایند. همچنین نتایج نشان داد که الگوریتم رندوم فارست با استفاده از داده‌های سنتینل 2، مقادیر زی‌توده روی زمینی درختان را بیشتر از مقدار واقعی برآورد نموده‌اند. بین مقادیر زی‌توده روی زمینی برآورد شده و واقعی تفاوت معنی‌داری در سطح احتمال 95 درصد وجود ندارد (p-value > 0.05).
نتیجه‌گیری: نتایج این تحقیق نشان داد که داده‌های سنتینل 2 با دقت قابل قبول توانسته‌اند زی‌توده روی زمینی توده‌های دست‌کاشت عرب داغ را برآورد نمایند و باتوجه به نتایج حاصل شده در این مقاله می‌توان گفت که اطلاعات باندهای اصلی و شاخص‌های طیفی نقش مهم در برآورد زی‌توده روی زمینی داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of above-ground biomass of Arabdagh reforested stands, Golestan province using Sentinel-2 satellite data

نویسندگان [English]

  • Hassan Ali 1
  • Jahangir Mohammadi 2
1 PhD in Forest Management, General Directorate of Forest Management and Development, Syria.
2 Associate Professor, Department of Forest Management, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Background and objectives: Today, reforested stands are one of the most important sources of forest carbon storage and one of the factors that reduce the process of destruction of natural areas. Above-ground biomass (AGB) plays an essential role in sustainable forest management and reducing global warming and is an important source of information. Allometric equations are an important tool for quantifying above-ground biomass in forests. In recent years, remote sensing techniques using non-parametric methods such as the Random Forest algorithm have been widely used to estimate forest tree biomass. In this research, the ability of Sentinel 2 data using the random forest algorithm to estimate the above-ground biomass of Arabdagh reforested stands in Golestan province was evaluated.

Materials and methods: In this study, 180 circular sample plots with an area of 400 square meters were measured using the cluster sampling method and the diameter at breast height (DBH) and tree height (H) were measured. Also, the exact coordinates of the centers of the sample plots were recorded using DGPS. Then, using the prepared allometric equations, the above-ground biomass of trees was calculated. In this study, Sentinel 2 pre-processed radiometric and geometrical data were used, and based on that, different vegetation indices were prepared. In the implementation of the random forest algorithm, the relationship between the characteristics of biomass as a dependent variable and the spectral values of vegetation indices as independent variables were investigated. Modeling was done using 75% of sample plots (135 sample plots) with random forest algorithm and validation of estimates was done using 25% of sample plots (45 sample plots).


Results: The results showed that NDVI and GNDVI indices had the highest correlation in the estimation of above-ground biomass and the random forest algorithm with 310 trees and 5 predictors and the percentage root mean square error of 35.83% and the coefficient of determination 0.51 was able to estimate the above-ground biomass of Arabdagh reforested stands. Also, the results showed that using the data of Sentinel 2, the random forest algorithm has estimated the above-ground biomass of trees more than the actual values. There is no significant difference at the 95% probability level between the estimated and real above-ground biomass values (p-value > 0.05). Also, among the independent variables used.
Conclusion: The results of this research showed that Sentinel 2 data has been able to estimate the above-ground biomass of Arabdagh reforested stands with acceptable accuracy. According to the results of this article, it can be said that the information of the main bands and spectral indices played an important role in the estimation of above-ground biomass.

کلیدواژه‌ها [English]

  • Random forest algorithm
  • Near-infrared band
  • Allometric equation
  • remote sensing
 1.Stovall, A. E., Anderson-Teixeira, K. J., & Shugart, H. H. (2018). Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management. 427, 217-229.
2.Mate, R., Johansson, T., & Sitoe, A. (2014). Biomass equations for tropical forest tree species in Mozambique. Forests. 5 (3), 535-556.
3.Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management. 352, 9-20.
4.FRWO. (2019). Forests, range and watershed organization.
5.Yuen, J. Q., Fung, T., & Ziegler, A. D. (2016). Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above-and below-ground carbon estimates. Forest Ecology and Management. 360, 323-340.
6.Wang, J., Zhang, C., Xia, F., Zhao, X., Wu, L., & Gadow, K. V. (2011). Biomass structure and allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fennica. 45 (2), 211-226.
7.Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo III, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. of Photogrammetry and Remote Sensing. 134, 70-85.
8.Guerini Filho, M., Kuplich, T. M., & Quadros, F. L. D. (2020). Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International J. of Remote Sensing. 41 (8), 2861-2876.
9.Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., & Naghavi, H. (2017). Estimation of aboveground biomass using optical and radar images (case study: Nav-e Asalem forests, Gilan). Iranian J. of Forest and Poplar Research. 25 (2), 320-330.
10.Torabzadeh, H., Moradi, M., & Fatehi, P. (2019). Estimating aboveground biomass in zagros forest, Iran, using sentinel-2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42, 1059-1063.
11.Moradi, F., Darvishsefat, A. A., Namiranian, M., & Ronoud, G. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stands in Khyroud Forest. Iranian J. of Forest and Poplar Research. 26 (3), 406-420.
12.Ronoud, GH., Darvishsefat, A. A., Schaepman, M. E., Namiranian, M., & Maghsoudi, Y. (2022). Woody aboveground biomass estimation using radar data in the mixed Hyrcanian forest (Case study: Khayroud forest of Nowshahr, Mazandaran). Iranian J. of Forest, 14 (3), 257-274.
13.Varamesh, S., & Mohtaram Anbaran, S. (2023). Investigation of the potential of sentinel-2 images in estimation of forest biomass. J. of Environmental Sciences Studies. 8 (3), 7149-7157.
14.Wai, P., Su, H., & Li, M. (2022). Estimating aboveground biomass of two different forest types in myanmar from sentinel-2 data with machine learning and geostatistical algorithms. Remote Sensing. 14 (9), 2146.
15.Chen, C., He, Y., Zhang, J., Xu, D., Han, D., Liao, Y., & Yin, T. (2023). Estimation of above-ground biomass for Pinus densata using multi-source time series in Shangri-La considering seasonal effects. Forests. 14 (9), 1747.
16.McRoberts, R. E., Tomppo, E. O., Finley, A. O., & Heikkinen, J. (2007). Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sensing of Environment. 111 (4), 466-480.
17.Tomppo, E. O., Gagliano, C., De Natale, F., Katila, M., & McRoberts, R. E. (2009). Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. Remote Sensing of Environment.113 (3), 500-517.
18.Hallaj, M. H. S., & Rostaghi, A. A. (2011). Study on growth performance of Turkish pine (case study: Arabdagh afforestation plan, Golestan Province). Iranian J. of Forest. 3 (3), 201-212.
19.Ali, H., Mohammadi, J., & Shataee Jouibary, S. (2023). Allometric models and biomass conversion and expansion factors to predict total tree-level aboveground biomass for three conifers species in Iran. Forest Science. 69 (4), 355-370.
20.Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment. 8 (2), 127-150.
21.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment. 25 (3), 295-309.
22.Jordan, C. F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology. 50 (4), 663-666.
23.Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote sensing of environment. 48 (2), 119-126.
24.Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. of plant physiology. 160 (3), 271-282.
25.Senseman, G. M., Bagley, C. F., & Tweddale, S. A. (1996). Correlation of rangeland cover measures to satellite‐imagery‐derived vegetation indices. Geocarto International. 11 (3), 29-38.
26.Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing. 43 (12), 1541-1552.
27.Dang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S., & Kumar, A. S. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics. 50, 24-32.
28.Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R news. 2 (3), 18-22.29.Chi, H., Sun, G., Huang, J., Li, R., Ren, X., Ni, W., & Fu, A. (2017). Estimation of forest aboveground biomass in Changbai Mountain region using ICESat/GLAS and Landsat/TM data. Remote Sensing. 9 (7), 707.
30.Baloloy, A. B., Blanco, A. C., Candido, C. G., Argamosa, R. J. L., Dumalag, J. B. L. C., Dimapilis, L. L. C., & Paringit, E. C. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: rapideye, planetscope and sentinel-2. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. 4, 29-36.
31.Ghosh, S. M., & Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography. 96, 29-40.
32.Ronoud, G., & Darvishsefat, A. A. (2018). Estimating aboveground woody biomass of Fagus orientalis stands in Hyrcanian forest of Iran using Landsat 5 satellite data (Case study: Khyroud Forest). Geographic Space. 17 (60), 117-129.
33.Aksoy, H. (2023). Modeling of above-ground biomass of pure Calabrian pine (Pinus brutia Ten.) stands using Sentinel-2 time series and Sentinel-1 imagery; a case study from the south of Turkey. Research Sqaure. Pp: 1-26.
34.Suardana, A. M. A. P., Anggraini, N., Nandika, M. R., Aziz, K., As-syakur, A. R., Ulfa, A., & Dewanti, R. (2023). Estimation and mapping above-ground mangrove carbon stock using sentinel-2 data derived vegetation indices in benoa bay of Bali province, Indonesia. Forest and Society. 7 (1), 116-134.
35.Zhu, Y., Feng, Z., Lu, J., & Liu, J. (2020). Estimation of forest biomass in Beijing (China) using multisource remote sensing and forest inventory data. Forests. 11 (2), 163-180.