1.Stovall, A. E., Anderson-Teixeira, K. J., & Shugart, H. H. (2018). Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management. 427, 217-229.
2.Mate, R., Johansson, T., & Sitoe, A. (2014). Biomass equations for tropical forest tree species in Mozambique. Forests. 5 (3), 535-556.
3.Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management. 352, 9-20.
4.FRWO. (2019). Forests, range and watershed organization.
5.Yuen, J. Q., Fung, T., & Ziegler, A. D. (2016). Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above-and below-ground carbon estimates. Forest Ecology and Management. 360, 323-340.
6.Wang, J., Zhang, C., Xia, F., Zhao, X., Wu, L., & Gadow, K. V. (2011). Biomass structure and allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fennica. 45 (2), 211-226.
7.Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo III, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. of Photogrammetry and Remote Sensing. 134, 70-85.
8.Guerini Filho, M., Kuplich, T. M., & Quadros, F. L. D. (2020). Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International J. of Remote Sensing. 41 (8), 2861-2876.
9.Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., & Naghavi, H. (2017). Estimation of aboveground biomass using optical and radar images (case study: Nav-e Asalem forests, Gilan). Iranian J. of Forest and Poplar Research. 25 (2), 320-330.
10.Torabzadeh, H., Moradi, M., & Fatehi, P. (2019). Estimating aboveground biomass in zagros forest, Iran, using sentinel-2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42, 1059-1063.
11.Moradi, F., Darvishsefat, A. A., Namiranian, M., & Ronoud, G. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stands in Khyroud Forest. Iranian J. of Forest and Poplar Research. 26 (3), 406-420.
12.Ronoud, GH., Darvishsefat, A. A., Schaepman, M. E., Namiranian, M., & Maghsoudi, Y. (2022). Woody aboveground biomass estimation using radar data in the mixed Hyrcanian forest (Case study: Khayroud forest of Nowshahr, Mazandaran). Iranian J. of Forest, 14 (3), 257-274.
13.Varamesh, S., & Mohtaram Anbaran, S. (2023). Investigation of the potential of sentinel-2 images in estimation of forest biomass. J. of Environmental Sciences Studies. 8 (3), 7149-7157.
14.Wai, P., Su, H., & Li, M. (2022). Estimating aboveground biomass of two different forest types in myanmar from sentinel-2 data with machine learning and geostatistical algorithms. Remote Sensing. 14 (9), 2146.
15.Chen, C., He, Y., Zhang, J., Xu, D., Han, D., Liao, Y., & Yin, T. (2023). Estimation of above-ground biomass for Pinus densata using multi-source time series in Shangri-La considering seasonal effects. Forests. 14 (9), 1747.
16.McRoberts, R. E., Tomppo, E. O., Finley, A. O., & Heikkinen, J. (2007). Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sensing of Environment. 111 (4), 466-480.
17.Tomppo, E. O., Gagliano, C., De Natale, F., Katila, M., & McRoberts, R. E. (2009). Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. Remote Sensing of Environment.113 (3), 500-517.
18.Hallaj, M. H. S., & Rostaghi, A. A. (2011). Study on growth performance of Turkish pine (case study: Arabdagh afforestation plan, Golestan Province). Iranian J. of Forest. 3 (3), 201-212.
19.Ali, H., Mohammadi, J., & Shataee Jouibary, S. (2023). Allometric models and biomass conversion and expansion factors to predict total tree-level aboveground biomass for three conifers species in Iran. Forest Science. 69 (4), 355-370.
20.Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment. 8 (2), 127-150.
21.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment. 25 (3), 295-309.
22.Jordan, C. F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology. 50 (4), 663-666.
23.Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote sensing of environment. 48 (2), 119-126.
24.Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. of plant physiology. 160 (3), 271-282.
25.Senseman, G. M., Bagley, C. F., & Tweddale, S. A. (1996). Correlation of rangeland cover measures to satellite‐imagery‐derived vegetation indices. Geocarto International. 11 (3), 29-38.
26.Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing. 43 (12), 1541-1552.
27.Dang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S., & Kumar, A. S. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics. 50, 24-32.
28.Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R news. 2 (3), 18-22.29.Chi, H., Sun, G., Huang, J., Li, R., Ren, X., Ni, W., & Fu, A. (2017). Estimation of forest aboveground biomass in Changbai Mountain region using ICESat/GLAS and Landsat/TM data. Remote Sensing. 9 (7), 707.
30.Baloloy, A. B., Blanco, A. C., Candido, C. G., Argamosa, R. J. L., Dumalag, J. B. L. C., Dimapilis, L. L. C., & Paringit, E. C. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: rapideye, planetscope and sentinel-2. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. 4, 29-36.
31.Ghosh, S. M., & Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography. 96, 29-40.
32.Ronoud, G., & Darvishsefat, A. A. (2018). Estimating aboveground woody biomass of Fagus orientalis stands in Hyrcanian forest of Iran using Landsat 5 satellite data (Case study: Khyroud Forest). Geographic Space. 17 (60), 117-129.
33.Aksoy, H. (2023). Modeling of above-ground biomass of pure Calabrian pine (Pinus brutia Ten.) stands using Sentinel-2 time series and Sentinel-1 imagery; a case study from the south of Turkey. Research Sqaure. Pp: 1-26.
34.Suardana, A. M. A. P., Anggraini, N., Nandika, M. R., Aziz, K., As-syakur, A. R., Ulfa, A., & Dewanti, R. (2023). Estimation and mapping above-ground mangrove carbon stock using sentinel-2 data derived vegetation indices in benoa bay of Bali province, Indonesia. Forest and Society. 7 (1), 116-134.
35.Zhu, Y., Feng, Z., Lu, J., & Liu, J. (2020). Estimation of forest biomass in Beijing (China) using multisource remote sensing and forest inventory data. Forests. 11 (2), 163-180.