1.Ganesamoorthy, R., Vadivel, V.K., Kumar, R., Kushwaha, O.S., and Mamane, H. 2021. Aerogels for water treatment: A review. J. of Cleaner Production. 329: 129713.
2.Kistler, S.S., Fischer, E.A., and Freeman, I.R. 1943. Sorption and surface area in silica aerogel. J. of American Chemical Society. 65: 10. 1909-1919.
3.Sehaqui, H., Zhou, Q., and Berglund, L.A. 2011. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology. 71: 13. 1593-1599.
4.Sehaqui, H. 2013. Lightweight foams and aerogels of biobased nanofibers. Handb of Green Materials. pp. 121-137.
5.Jiang, F., and Hsieh, Y.L. 2014. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. of Materials Chemistry A. 2: 18. 6337-6342.
6.Peydayesh, M., and Mezzenga, R. 2021. Protein nanofibrils for next generation sustainable water purification. Nature Communications. 12: 1. 3248.
7.Ablouh, E.H., Kassab, Z., Semlali Aouragh Hassani, F., El Achaby, M., and Sehaqui, H. 2022. Phosphorylated cellulose paper as highly efficient adsorbent for cadmium heavy metal ion removal in aqueous solutions. RSC Advances. 12: 2. 1084-1094.
8.Choudhury, R.R., Sahoo, S.K., and Gohil, J.M. 2020. Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose. 27: 12. 6719-6746.
9.Abdel-Halim, E.S. 2014. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian J. of Chemistry. 7: 3. 362-371.
10.Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Zabermawi, N.M., Arif, M., Batiha, G.E., Khafaga, A.F., Abd
El-Hakim, Y.M., and Al-Sagheer, A.A. 2020. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. International J. of Biological Macromolecules. 164: 2726-2744.
11.Arcari, M., Axelrod, R., Adamcik, J., Handschin, S., Sánchez-Ferrer, A., Mezzenga, R., and Nyström, G. 2020. Structure-property relationships of cellulose nanofibril hydro-and aerogels and their building blocks. Nanoscale. 12: 21. 11638-11646.
12.Jung, J., Savin, G., Pouzot, M., and Schmitt, C. 2008. Structure of heat-induced - lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules. 9: 9. 2477-2486.
13.Ke, P.C., Zhou, R., Serpell, L.C., Riek, R., Knowles, T.P.J., Lashuel, H.A., Gazit, E., Hamley, I.W., Davis, T.P., Fändrich, M., Otzen, D.E., Chapman, M.R., Dobson, C.M., Eisenberg, D.S., and Mezzenga, R. 2020. Half a century of amyloids: Past, present and future. Chemical Society Reviews. 49: 15. 5473-5509.
14.Knowles, T.P.J., and Mezzenga, R. 2016. Amyloid fibrils as building blocks for natural and artificial functional materials. Advanced Materials. 28: 31. 6546-6561.
15.Fischer, F., Rigacci, A., Pirard, R., Berthon-Fabry, S., and Achard, P. 2006. Cellulose-based aerogels. Polymer. 47: 22. 7636–7645.
16.Korhonen, J.T., Kettunen, M., Ras, R.H.A., and Ikkala, O. 2011. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Applied Materials & Interfaces. 3: 6. 1813-1816.
17.Nguyen, S.T., Feng, J., Le, N.T., Le, A.T.T., Hoang, N., Tan, V.B.C., and Duong, H.M. 2013. Cellulose aerogel from paper waste for crude oil spill cleaning. Industrial & Engineering Chemistry Research. 52: 51. 18386-18391.
18.Feng, J., Nguyen, S.T., Fan, Z., and Duong, H.M. 2015. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering J. 15: 270. 168-175.
19.Li, Z., Shao, L., Ruan, Z., Hu, W., Lu, L., and Chen, Y. 2018. Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions. Carbohydrate Polymers. 193: 221-227.
20.Li, Z., Shao, L., Hu, W., Zheng, T., Lu, L., Cao, Y., and Chen, Y. 2018. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydrate Polymers. 191: 183-190.
21.Tu, H., Yu, Y., Chen, J., Shi, X., Zhou, J., Deng, H., and Du, Y. 2017. Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polymer Chemistry. 8: 19. 2913-2921.
22.Leung, W.H., So, P.K., Wong, W.T., Lo, W.H., and Chan, P.H. 2016. Ethylenediamine-modified amyloid fibrils of hen lysozyme with stronger adsorption capacity as rapid nano-biosorbents for removal of chromium (vi) ions. RSC Advances. 6: 108. 106837-106846.
23.Morshedi, D., Mohammadi, Z., Boojar, M.M.A., and Aliakbari, F. 2013. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids and Surfaces B: Biointerfaces. 112. 245-254.
24.Peydayesh, M., Suter, M.K., Bolisetty, S., Boulos, S., Handschin, S., Nyström, L., and Mezzenga, R. 2020. Amyloid fibrils aerogel for sustainable removal of organic contaminants from water. Advanced Materials. 32: 12. 1-6.
25.Nystrom, G., Fong, W.K., and Mezzenga, R. 2017. Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules. 18: 9. 2858-2865.
26.Biancalana, M., and Koide, S. 2010. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1804: 7. 1405-1412.
27.Nyström, G., Fong, W., and Mezzenga, R. 2017. Ice-templated and cross-linked amyloid fibril aerogel scaffolds for cell growth. Biomacromolecules. 18: 9. 2858-2865.
28.Usuelli, M., Germerdonk, T., Cao, Y., Peydayesh, M., Bagnani, M., Handschin, S., Nyström, G., and Mezzenga, R. 2021. Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale. 13: 29. 12534-12545.
29.Dilamian, M., and Noroozi, B. 2021. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous
super hydrophobic cellulose aerogel. Carbohydrate Polymers. 251: 117016.
30.Peydayesh, M., Chen, X., Vogt, J., Donat, F., Müller, C.R., and Mezzenga, R. 2022. Amyloid fibril-UiO-66- NH2 aerogels for environmental remediation. Chemical Communications. 58: 5104-5107.
31.Rong, N., Chen, C., Ouyang, K., Zhang, K., Wang, X., and Xu, Z. 2021. Adsorption characteristics of directional cellulose nanofiber/ chitosan/ montmorillonite aerogel as adsorbent for wastewater treatment. Separation and Purification Technology. 274: 119120.
32.Rahimi Aqdam, S., Otzen, D.E., Mahmoodi, N.M., and Morshedi, D. 2021. Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: quilibrium isotherm and kinetic modeling. J. of Colloid and Interface Science. 602: 490-503.
33.Mohammadreza Miraboutalebi, S., Peydayesh, M., Bagheri, M., and Mohammadi, T. 2020. Polyacrylonitrile/ α-Fe2O3 hybrid photocatalytic composite adsorbents for enhanced dye removal. Chemical Engineering Technology. 43: 6. 1214-1223.
34.Jia, X., Peydayesh, M., Huang, Q., and Mezzenga, R. 2022. Amyloid fibril templated MOF aerogels for water purification. Small. 18: 4. 2105502.
35.Yang, G.H., Bao, D.D., Zhang, D.Q., Wang, C., Qu, L.L., and Li, H.T. 2018. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Research Letters. 13: 1. 1-8.