برآورد مشخصه‌های کمی تک درختان جنگلی با استفاده از داده‌های لیزر اسکنر هوایی در بخشی از جنگل‌های شصت کلاته گرگان

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد ، دانشکده علوم جنگل، دانشگاه علوم کشاورزی منابع طبیعی گرگان، گرگان، ایران،

2 استادیار، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران،

3 استاد، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سابقه و هدف: در این تحقیق قابلیت داده‌های لیزر اسکنر هوایی در برآورد ارتفاع، حجم، رویه زمینی، قطر برابر سینه و مساحت تاج پوشش تک درختان جنگلی در بخشی از جنگل‌های پهن‌برگ شصت کلاته گرگان مورد ارزیابی قرار گرفت.
مواد و روش‌ها: در این مطالعه 125 پایه‌ی درختی از درختان که دارای تاج مستقل بودند و تداخل تاجی با پایه‌های مجاور نداشتند انتخاب شد. اطلاعات نوع گونه، ارتفاع، قطر بزرگ و قطر کوچک تاج هر درخت اندازه‌گیری و سپس ارتفاع درختان با استفاده از دستگاه ورتکس لیزری اندازه‌گیری شد و موقعیت مراکز درختان با استفاده از دستگاه سیستم موقعیت یاب تفاضلی برداشت گردید. پس از جداسازی مرز تاج پوشش تک درختان و تهیه پلی‌گون مرز آن‌ها از تصاویر دوربین رقومی هوایی UltraCam-D، داده‌های لیزر اسکنر هوایی برای هر درخت جدا و تمامی شاخص‌های ارتفاعی و تراکمی داده‌های لیزر اسکنر هوایی برای آنها محاسبه گردید. سپس با استفاده از الگوریتم‌های ناپارامتریک (RF، k-NN، SVR و ANN) و رگرسیون چند متغییره مشخصه‌های ارتفاع، حجم، رویه زمینی، قطر برابر سینه و مساحت تاج پوشش تک درختان جنگلی مدلسازی شدند.
یافته‌ها: نتایج حاصل از روابط رگرسیونی و الگوریتم‌های ناپارامتریک بین ارتفاع، حجم، رویه زمینی، قطر برابر سینه و مساحت تاج پوشش درختان اندازه‌گیری شده با استخراج‌شده از داده‌های لیزر اسکنر هوایی نشان داد که درصد میانگین مجذور مربعات خطا و انحراف معیار از تفاوت‌هابرای مشخصه‌های ارتفاع، حجم، رویه زمینی، قطر برابر سینه و مساحت تاج پوشش تک درختان با استفاده از بهترین مدل به ترتیب 39/13، 78/56، 17/33، 34/22 و 88/25 درصد و 71/1 متر و 59/0 متر مکعب، 049/0 متر مربع، 2/9 سانتی‌متر و 26/39 مترمربع به‌دست آمد.
نتیجه‌گیری: به طور کلی نتایج نشان داد که داده‌های لیزر اسکنر هوایی قابلیت برآورد مشخصه‌ ارتفاع درختان را با دقت خوب، و مشخصه‌های رویه زمینی، قطر برابر سینه و مساحت تاج پوشش تک درختان را با دقت مناسب دارد ولی قابلیت برآورد مشخصه حجم سرپا تک درختان را با دقت خوب نداشت. همچنین نتایج نشان داد که از میان الگوریتم‌های پارامتریک و ناپارامتریک الگوریتم ناپارامتریک شبکه عصبی مصنوعی عملکرد بهتری نسبت به سایر الگوریتم‌ها داشت.
تیجه‌گیری: به طور کلی نتایج نشان داد که داده‌های لیزر اسکنر هوایی قابلیت برآورد مشخصه‌ ارتفاع درختان را با دقت خوب، و مشخصه‌های رویه زمینی، قطر برابر سینه و مساحت تاج پوشش تک درختان را با دقت مناسب دارد ولی قابلیت برآورد مشخصه حجم سرپا تک درختان را با دقت خوب نداشت. همچنین نتایج نشان داد که از میان الگوریتم‌های پارامتریک و ناپارامتریک الگوریتم ناپارامتریک شبکه عصبی مصنوعی عملکرد بهتری نسبت به سایر الگوریتم‌ها داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of the Some Quantitative Characteristics of Individual tree Using Airborne Laser Scanning Data in part of Shast-Kalate forests of Gorgan

نویسندگان [English]

  • Zahra Sayed mosavi 1
  • Jahangir Mohammadi 2
  • Shaban Shataee 3
1 Gorgan University of Agricultural Sciences and Natural Resources
2
3 Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Background and objectives: In this study we evaluated the potential of ALS data in estimation of height, volume, basal area and DBH and canopy cover area of individualtrees for the part of Shast kalate of Gorgan.
Materials and methods: In this study 125 tree that located in dominant story and without overlay with adjacent trees, were selected. Tree species, tree diameter at breast height (DBH) and tree crown diameter were measured. The height of trees was measured using a Vertex VL 402. Center coordinates of sample trees were determined using Digital Golobal Position System. After separating the crown border of a single tree and providing a polygon of the boundaries of them using aerial digital images, all of height and density metrics were created.Then, we explored the possibility of defining relationships between combination of airborne laser scanning data and height, volume, basal area, DBH and canopy cover area of individual trees using machine learning algorithms (random forest (RF), support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN)).

Results:
The best RMSE% on an independent validation data for height, volume, canopy basal area, diameter, and basal area were 13.39, 56.88, 33.17, 22.34 and 25.88%. Also, the results demonstrate that the ANN algorithm can be useful for modeling biophysical properties of individual tree in the North of Iran.

Conclusion: Overall, the results showed the ALS data has the ability to estimate of tree height, basal area, diameter at breasts, and canopy cover but this data hasn’t the ability to estimate the volume very accurate. Also, the results showed that between all algorithms, the ANN algorithm have a better performance than other algorithms.
Conclusion: Overall, the results showed the ALS data has the ability to estimate of tree height, basal area, diameter at breasts, and canopy cover but this data hasn’t the ability to estimate the volume very accurate. Also, the results showed that between all algorithms, the ANN algorithm have a better performance than other algorithms.Conclusion: Overall, the results showed the ALS data has the ability to estimate of tree height, basal area, diameter at breasts, and canopy cover but this data hasn’t the ability to estimate the volume very accurate. Also, the results showed that between all algorithms, the ANN algorithm have a better performance than other algorithms.Conclusion: Overall, the results showed the ALS data has the ability to estimate of tree height, basal area, diameter at breasts, and canopy cover but this data hasn’t the ability to estimate the volume very accurate. Also, the results showed that between all algorithms, the ANN algorithm have a better performance than other algorithms.

کلیدواژه‌ها [English]

  • Parametric and Nonparametric Algorithms
  • Root Mean Square Error Percentage
  • Data Mining
  • Biophysical Properties of Individual tree
1.Amiri, M., Darghahi, D., Azadefar, D., and Habashi, E. 2008 Comparison of the composition and structure of natural and utilized lagoons in the Lough Forest of Gorgan, J. Agric. Sci. Natur. Resour.
2.Andersen, H.E., Reutebuch, S.E., and McGaughey, R.J. 2006. Rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Rem. Sens. 32: 5. 355-366.
3.Brandtberg, T., Warner, T.A., Landenberger, R.E., and McGraw, J.B. 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling densitylidar data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85: 3. 290-303.
4.Chen, Q., et al. 2007. Estimating basal area and stem volume for individual trees from lidar data. Photogrammetric Engineering and Remote Sensing.5   .Chen, Q., Baldocchi, D., Gong, P.,and Kelly, M. 2006. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogrammetric Engineering and Remote Sensing,
6.Dagestani. 2009. Application of remote sensing science in forest management, first geomechanical congress. Pp: 4-8.
7.Doctor Bahramnia Forestry plan Management. 2009. Forest Science Faculty, Gorgan university of Agricultural Sciences and Natural Recourses. 478p.(In Persian)
8.Gougeon, F.A. 1995. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Rem. Sens. 213: 274-284.
9.Hajeb, M. 2009. Extraction of Road from Lidar Data. Master's Thesis, Shahid Beheshti University, Tehran. 80p.
10.Heurich, M., and Thoma, F. 2003. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagussylvatica) and Norway spruce (Piceaabies) forests. Forestry.81: 5. 645-661. 
11.Jung, S.E., Kwak, D.A., Park, T., Lee, W.K., and Yoo, S. 2011. Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sensing, 3: 11. 2346-2363.
12.Khorrami, R.A., Darvishsefat, A.A., Tabari Kochaksaraei, M., and Shataee Jouybari, Sh. 2013. Potential of LIDAR data for estimation of individual tree height of Acer velutinum and Carpinus betulus, Iran. J. For. 6: 2. 127-140.(In Persian)
13.Korpela, I., Dahlin, B., Schäfer, H.,and Bruun, E. 2007. Single-tree forest inventory using Lidar and aerial images for 3Drreetop positioning, species recognition, height and crown width estimation. ISPRS. 36: 1-7.
14.Kraus, K., and Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data, ISPRS J. Photogrammetry Rem. Sens. 53: 193-203.
15.och, B., Heyder, U., and Weinacker, H. 2006. Detection of individual tree crowns in airborne lidar data.  Photogrammetric Engineering and Remote Sensing, 72: 4. 357-363.
16.Kwak, D.A., Lee, W.K., Lee, J.H., Biging, G.S., and Gong, P. 2007. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res. 12: 6. 425-434.
17.Makela, H., and Pekkarinen, A. 2004. Estimation of forest stands volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management. 196: 245-255.
18.Mohammadi, J., Shataee, S., Namiranian, M., and Næsset, E. 2017. Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images. Inter. J. Appl. Earth Obser. Geoinfo. 61: 32-45.
19.Mohammadi, J., and Shataee, Sh., Yaghmaee, F., and Mahiny, A.S.2010. Modeling Forest Stand Volume and Tree Density Using Landsat ETM+ Data. International Journal of Remote Sensing. 31: 11. 2959-2975.
20.Morsdorf, F., et al. 2004. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment.
21.Persson, A., Holmgren, J., and So¨derman, U. 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng. Rem. Sens. 68: 925-932.
22.Popescu, S.C., Wynne, R.H., and Nelson, R.H. 2004. Measuring individual tree crown diameter with LIDAR and assessing its influence on estimating forest volume and biomass, Can. J. Rem. Sens. 29: 5. 564-577.
23.Silva, Carlos A., Hudak, A.T, Vierling, L.A. 2016. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Can. J. Rem. Sens.
24.Wu, J., Yao, W., Choi, S., and Park, T. 2015. A comparative study of predicting DBH and stem volum of individual trees in a temperate forest using airborne waveform LiDAR. IEEE geoscience and Remote Sensing letters. 5: 1-5.
25.Yao, W., Krzystek, P., and Heurich,M. 2012. Tree Species Classification and Estimation of Stem Volume and DBH based on Single Tree Extraction by Exploiting Airborne LiDAR Data. Remote Sensing of Environment.