1. Ahmed, R.U. 2012. Accuracy of Biomass and Structure Estimates from Radar and Lidar.
Ph.D Dissertations in University of Massachusetts Amherst.
2. Amini, J., and Sadeghi, Y. 2013. Optical and radar images in modeling the forests biomass in
north of Iran. Remote sensing and GIS, 4(4): 69-82. (In Persian)
3. Anaya, J.A., Chuvieco, E., and Palacios-Orueta, A. 2009. Aboveground biomass assessment
in Colombia: a remote sensing approach. Forest Ecology and Management. 257: 1237–1246.
4. Asner, G.P., Clark, J.K., Mascaro, J., Vaudry, R., Chadwick, R.D., Vieilledent, G., Rasamoelina,
M., Balaji, A., Kennedy-Bowdoin, T., Maatoug, L., Colgan, M.S., and Knapp, D.E. 2012.
Human and environmental controls over aboveground carbon storage in Madagascar. Carbon
Balance and Management. 7(2): http://www.cbmjournal.com/content/7/1/2.
5. Attarchi, S., and Gloaguen, R. 2014. Improving the Estimation of Above Ground Biomass
Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran).
Remote Sensing. 6: 3693-3715.
6. Avitabile, V., Baccini, A., Friedl, M.A., and Schmullius, C. 2012. Capabilities and limitation
of Landsat and land cover data for aboveground woody biomass estimation of Uganda.
Remote Sensing Environment. 117: 366-380.
7. Boudreau, J., Nelson, R.F., Margolis, H.A., Beaudoin, A., Guindon, L., Kimes, D.S. 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec.
Remote Sensing of Environment. 112: 3876–3890.
8. Briceno-Elizondo, E., Garcia-Gonzalo, J., Peltola, H., and Kellomaki, S. 2006. Carbon
stocks and timber yield in two boreal forest ecosystems under current and changing climatic
conditions subjected to varying management regimes. Environmental Science and Policy, 9:
237-252.
9. Calvao, T., and Palmeirim, J.M. 2004. Mapping mediterranean scrub with satellite imagery:
biomass estimation and spectral behaviour. International Journal of Remote Sensing, 25(16):
3113-26.
10. Chen, B., Arain, M.A., Khomik, M., Trofymow, J.A., Grant, R.F., Kruz, W.A., Yeluripati, J.,
and Wang, Z. 2013. Evaluating the impacts of climate variability and disturbance regimes on
the historic carbon budget of a forest landscape. Agricultural and Forest Meteorology. 180:
256-280.
11. Chen, Q., Laurin, G.V., Battles, J.J., and Saah. D. 2012. Integration of airborne lidar and
vegetation types derived from aerial photography for mapping aboveground live biomass.
Remote Sensing of Environment. 121: 108-117.
12. Chen, X., Liu, Sh., Zhu, Zh., Vogelmann, J., Li, Zh., and Ohlen, D. 2011. Estimating
aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus
using data from the Forest Inventory and Analysis Program, Landsat, and LANDFIRE.
Ecological Indicator. 11: 140-148.
13. Cohen, W.B., and Goward, S.N. 2004. Landsat's Role in Ecological Applications of Remote
Sensing. BioScience 54(6): 535-545.
14. Coops, N.C. 2015. Characterizing Forest Growth and Productivity Using Remotely Sensed
Data. Current Forestry Reports, 1(3): 195-205.
15. Dai, L., Jia, J., Yu, D., Lewis, B.J., Zhou, L., Zhou, W., Zhao, W., and Jiang, L. 2013.,
Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems
on Changbai Mountain in Northeast China. Forest Ecology and Management. 300: 106-116.
16. Deng, Sh., Shi, Y., Jin, Y., and Wang, L. 2011. A GIS-based approach for quantifying and
mapping carbon sink and stock values of forest ecosystem: A case study. Energy Procedia 5:
1535–1545.
17. Du, H., Cui, R., Zhou, G., Shi, Y., Xu, X., Fan, W., and Lü, Y. 2010. The responses of Moso
bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat
TM spectral reflectance and NDVI. Acta Ecologica Sinica, 30(5): 257-63.
18. Dube, T., and Mutanga, O. 2015. Evaluating the utility of the medium-spatial resolution
Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment,
South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 36-46.
19. Eckert, S. 2012. Improved Forest Biomass and Carbon Estimations Using Texture Measures
from WorldView-2 Satellite Data. Remote Sensing. 4: 810-829.
20. Eisfelder, Ch., Kuenzer, C., and Dech, S. 2011. Derivation of biomass information for semiarid
areas using remote-sensing data. International Journal of Remote Sensing., 33(9): 2937-
2984.
21. Fassnacht, F.E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., and Koch, B.
2014. Importance of sample size, data type and prediction method for remote sensing-based
estimations of aboveground forest biomass. Remote Sensing of Environment. 154: 102-114.
22. Filippi, A.M., Güneralp, I., and Randall, J. 2014. Hyperspectral remote sensing of
aboveground biomass on a river meander bend using multivariate adaptive regression splines
and stochastic gradient boosting, Remote Sensing Letters, 5(5): 432-441.
23. Frazier, R.J., Coops, N.C., Wulder, M.A., and Kennedy, R. 2014. Characterization of
aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation
metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 137-46.
24. Fu, L., Zhao, Y., Xu, Zh., and Wu, B. 2015. Spatial and temporal dynamics of forest
aboveground carbon stocks in response to climate and environmental changes. Soils
Sediments., 15: 249-259.
25. Gagliasso, D., Hummel, S., and Temesgen, H. 2014. A Comparison of Selected Parametric
and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area.
Forestry., 4(1): 42-48.
26. Gasparri, N.I., Parmuchi, M.G., Bono, J., Karszenbaum, H., and Montenegro, C.L. 2010.
Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in
subtropical dry forests of Argentina Journal of Arid Environments., 74: 1262-1270.
27. Gleason, C.J., and Im, J. 2012. Forest biomass estimation from airborne LiDAR data using
machine learning approaches. Remote Sensing of Environment., 125: 80-91.
28. Gómez, C., White, J.C., Wulder, M.A., and Alejandro, P. 2014. Historical forest biomass
dynamics modelled with Landsat spectral trajectories. ISPRS Journal of Photogrammetry
and Remote Sensing, 93: 14-28.
29. Görgens, E.B., Montaghi, A., and Rodriguez, L.C.E. 2015. A performance comparison of
machine learning methods to estimate the fast-growing forest plantation yield based on laser
scanning metrics. Computers and Electronics in Agriculture, 116: 221-7.
30. Güneralp, I., Filippi, A.M., and Randall, J. 2014. Estimation of floodplain aboveground
biomass using multispectral remote sensing and nonparametric modeling. International
Journal of Applied Earth Observation and Geoinformation, 33: 119-26.
31. Iranmanesh, Y. 2013. Assessment on biomass estimation methods and carbon sequestration
of quercus brantii Lindl. in chaharmahal and bakhtiari forests, Ph.D. thesis, Faculty of
Natural Resource And Mariane Science, Tarbiat Modares University. (In Persian)
32. Kelsey, K.C., and Neff, J.C. 2014. Estimates of Aboveground Biomass from Texture
Analysis of Landsat Imagery. Remote Sensing., 6: 6407-6422.
33. Kwak, D., Lee, S., Kim, S., Lee, W., Son, Y., Cho, H., and Kafatos, M. 2010. Estimating
stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Reasreach. 123:
421–432.
34. Labrecque, S., Fournier, R.A., Luther, J.E., and Piercey, D. 2006. A comparison of four
methods to map biomass from Landsat-TM and inventory data in western Newfoundland.
Forest Ecology and Management, 226: 129–144.
35. Langner, A., Samejima, H., Ong, R.C., Titin, J., and Kitayama, K. 2012. Integration of
carbon conservation into sustainable forest management using high resolution satellite
imagery: A case study in Sabah, Malaysian Borneo. International Journal of Applied Earth
Observation and Geoinformation, 18: 305-12.
36. Latifi, H., Fassnacht, F.E., Hartig, F., Berger, Ch., Hernández, J., Corvalán, P., and Koch, B.
2015. Stratified aboveground forest biomass estimation by remote sensing data. International
Journal of Applied Earth Observation and Geoinformation. 38: 229–241.
37. Lei, Zh, Shaoqiang, W., Georg, K., Guirui, Y., Mei, H., Robert, M., Florian, K., Hao, Sh.,
and Yazhen, G. 2013. Carbon dynamics in woody biomass of forest ecosystem in China with
forest management practices under future climate change and rising CO2 concentration.
Chinese Geographical Science, 23(5): 519-536.
38. Lin, D., Lai, J., Muller-Landau, H.C., Mi, X., and Ma, K. 2012. Topographic Variation in
Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China. PLoS
ONE 7(10), e48244. doi :10.1371/journal.pone.0048244.
39. Lindner, M., Maroschek-Nethererc, S., Kremer, A., Barbati, A., Garcia-Gonzaloa, J., Seidl,
R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., and Marchettie, M. 2010. Climate
change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest
Ecology and Management., 259: 698-709.
40. Lu, D., and Batistella, M. 2005. Exploring TM image texture and its relationships with
biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica. 35(2): 249-257.
http://dx.doi.org/10.1590/S0044-59672005000200015.
41. Lu, D., Mausel, P., Brondizio, E., and Moran, E. 2002. Above-Ground Biomass Estimation
of Successional and Mature Forests Using TM Images in the Amazon Basin. Advances in
Spatial Data Handling: 183-196.
42. Main-Knorn, M., Cohen, W.B., Kennedy, R.E., Grodzki, W., Griffiths, P., Hostert, P.,
Pflugmacher, D. 2013. Monitoring coniferous forest biomass change using a Landsat
trajectory-based approach. Remote Sensing of Environment., 139: 227-290.
43. Mandal, G., and Joshi, S.P. 2015. Biomass accumulation and carbon sequestration potential
of dry deciduous forests. International Journal of Ecology and Development. 30(1): 64-82.
44. Morel, A.C., Fisher, J.B., and Malhi, Y. 2012. Evaluating the potential to monitor
aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000–2008 with Landsat
ETM+ and ALOS-PALSAR. International Journal of Remote Sensing, 33(11): 3614-3639.
45. Gonzalez, P., Asner, G.A., Battles, J.J., Lefsky, M.A., Waring, K.M., Palace, M. 2012.
Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in
California. Remote Sensing of Environment. 114: 1561-1575.
46. Muukkonen, P., Heiskanen, L. 2007. Biomass estimation over a large area based on
standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify
carbon inventories. Remote Sensing of Environment 107: 617–624.
47. Nelson, R. 2010. Model effects on GLAS-based regional estimates of forest biomass and
carbon. International Journal of Remote Sensing., 31(5): 1359-1372.
48. Nole, A., Law, B.E., Magnani, F., Matteucci, G., Ferrara, A., Ripullone, F., Borghetti, M.
2009. Application of the 3-PGS model to assess carbon accumulation in forest ecosystems at
a regional level. Canadian Journal of Forest research. 39: 1647–1661.
49. Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L.,
Shvidenko, A., Lewis, S.L., and Canadell, J.G. 2011. A large and persistent carbon sink in
the world’s forests. Science, 333 (6045): 988-93.
50. Potter, Ch., Gross, P., Genovese, V., and Smith, M.L. 2007. Net primary productivity of
forest stands in New Hampshire estimated from Landsat and MODIS satellite data. Carbon
Balance and Management. 2:9 doi: 10.1186/1750-0680-2-9.
51. Powell, S.L., Healey, S.P., Cohen, W.B., Kennedy, R.E., Moisen, G.G., Pierce, K.B.,
Ohmann, J.L. 2010. Quantification of Live Aboveground Forest Biomass Dynamics with
Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling
Approaches. Remote Sensing of Environment, 114: 1053-1068.
52. R Core Team, 2016. R: A language and environment for statistical computing. R Foundation
for statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
53. Riaño, D., Chuvieco, E., Salas, J., and Aguado, I. 2003. Assessment of Different
Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types. IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 41(5): 1056-1061.
54. Sherestha, R., Wynne, R.H. 2012. Estimating Biophysical Parameters of Individual Trees in
an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar. Remote
Sensing. 4, 484-508; doi:10.3390/rs4020484.
55. Spangler, L., Vierling, L.A. 2011. Quantifying Forest Aboveground Carbon Pools And
Fluxes Using Multi-Temporal Lidar. US Department of Energy Publications. Paper 355.
http://digitalcommons.unl.edu/usdoepub/355.
56. Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, Sh., and Fang, J. 2016. Spatial
distribution of forest aboveground biomass in China: Estimation through combination of
spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment
173: 187-99.
57. Tan, K., Piao, S., Peng, C., and Fang, J. 2007. Satellite-based estimation of biomass carbon
stocks for northeast China’s forests between 1982 and 1999. Forest Ecology and
Management. 240, 114–121.
58. Torres, A.B., MacMillan, D.C., and Skutsch, M. 2015. ‘Yes-in-my-backyard’: Spatial
differences in the valuation of forest services and local co-benefits for carbon markets in
México. Ecological Economics 109: 130–141.
59. Walton, J. 2008. Subpixel urban land cover estimation: comparing cubist, random forests,
and support vector regression. Photogrammetric Engineering and Remote Sensing, 74(10):
1213–1222.
60. Wang, X., Lewis, B.J., Zhou, L., Dai, L., Shao, G., Qi, G., Chen, H., Yu, D. 2013. An
Application of Remote Sensing Data in Mapping Landscape Level Forest Biomass for
Monitoring the Effectiveness of Forest Policies in Northeastern China. Environmental
Management. 52: 612–620.
61. Wani, A.A., Joshi, P.K., and Singh, O. 2015. Estimating biomass and carbon mitigation of
temperate coniferous using spectral modeling and field inventory data. Ecological
Informatics. 25: 63-70.
62. Were, K., Dieu, T.B., Dick, Ø.B., and Singh, B.R. 2015. A comparative assessment of
support vector regression, artificial neural networks, and random forests for predicting and
mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators
52: 394-403.
63. Wijaya, A., Kusnadi, S., Gloaguen, R., and Heilmeier, H. 2010. Improved strategy for
estimating stem volume and forest biomass using moderate resolution remote sensing data
and GIS. Journal of Forestry Research. 21(1): 1−12.
64. Yan, F., Wu, B., and Wang, Y. 2015. Estimating spatiotemporal patterns of aboveground
biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China.
Agricultural and Forest Meteorology. 200: 119-128.
65. Zandler, H., Brenning, A., and Samimi, C. 2015. Quantifying dwarf shrub biomass in an arid
environment: Comparing empirical methods in a high dimensional setting. Remote Sensing
of Environment 158: 140-55.
66. Zhang, Y., and Liang, Sh. 2014. Changes in forest biomass and linkage to climate and forest
disturbances over Northeastern China. Global Change Biology. 20: 2596–2606.
67. Zheng, G., Chen, J.M., Tian, Q.J., Ju, W.M., and Xia, X.Q. 2007. Combining remote sensing
imagery and forest age inventory for biomass mapping. Journal of Environmental
Management. 85: 616–623.
68. Zhu, X., and Liu, D. 2015. Improving forest aboveground biomass estimation using seasonal
Landsat NDVI time-series. ISPRS Journal of Photogrammetry and Remote Sensing. 102:
222-231.