تعیین اثر گرادیان ارتفاعی بر مشخصه‌های کمی توده‌های جنگلی (مطالعه موردی: جنگل‌های سری سه سنگده)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران،

2 دانشیار دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار ، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

سابقه و هدف: برآورد زی‌توده و محتوای کربن درختان و سایر رستنی‌ها با توجه به اهمیت موضوع گرمایش زمین و تغییر اقلیم از اهمیت زیادی برخوردار بوده و تعیین زی‌توده به‌منظور تأثیر آن بر اقلیم و مدیریت منابع طبیعی امری ضروری می‌باشد. در مناطق جنگلی که همراه با تغییرات ارتفاعی می‌باشد، معمولا" مقادیر مشخصه‌های کمی توده‌های جنگلی نیز تغییر می‌کند. هدف از این تحقیق تعیین اثر ارتفاع از سطح دریا بر مشخصه‌های کمی جنگل شامل تعداد در هکتار، رویه زمینی، موجودی سرپا، مقدار زی‌توده و میزان ذخیره کربن در توده‌های جنگلی سری سه سنگده می‌باشد.
مواد و روش‌ها: در ابتدا منطقه مورد مطالعه به سه طبقه با دامنه ارتفاعی 1600-1400، 1800-1600 و 2000-1800 متر از سطح دریا تقسیم شد و در هر طبقه تعداد 50 قطعه نمونه دایره‌ای به روش تصادفی منظم به مساحت 10 آری با پوشش سراسری کل طبقات ارتفاعی انتخاب گردید. در هر قطعه نمونه مشخصه‌های نوع گونه، ارتفاع کل درختان و قطر برابر سینه درختان با بیش از 5/7 سانتی-متر ثبت شد. سپس چگالی تمام گونه‌های موجود در قطعات نمونه در آزمایشگاه تعیین گردید. بعد از آن میزان زی‌توده در سطح قطعات نمونه بر اساس مدل جهانی فائو و مقدار ذخیره کربن روی زمینی نیز با اعمال ضریب محاسبه گردید.
یافته‌ها: نتایج مطالعه نشان داد که از طبقه ارتفاعی پایین به بالا به‌ترتیب مقادیر تعداد در هکتار برابر با 477، 384 و 372 اصله و رویه زمینی در هکتار برابر با 58/25، 42/29 و 84/30 مترمربع می‌باشد. هم‌چنین مقادیر حجم در هکتار به‌ترتیب برابر با 25/314، 98/393 و 75/424 سیلو برآورد گردیده است. یافته‌های این پژوهش نشان داد که میزان زی‌توده برای هر سه طبقه ارتفاعی از پائین به بالا به‌ترتیب برابر با 68/406، 26/478 و 30/522 تن در هکتار و میزان ذخیره کربن نیز به‌ترتیب 34/203، 12/239 و 15/261 تن در هکتار برآورد که با افزایش ارتفاع از سطح دریا روند صعودی را نشان می‌دهد. نتایج حاصل از تجزیه واریانس حاکی از اختلاف معنی‌دار بین ارتفاع از سطح دریا با مشخصه‌های مورد نظر به احتمال 95/0 دارد. هم‌چنین نتایج همبستگی اسپیرمن نشان می‌دهد که بین ارتفاع از سطح دریا و مشخصه‌های تعداد درختان، رویه زمینی، حجم و زی‌توده روی زمینی در هکتار همبستگی معنی‌داری در سطح 99 درصد وجود دارد.
نتیجه‌گیری: در مجموع نتایج این تحقیق در منطقه مورد مطالعه نشان می‌دهد که تغییرات ارتفاع از سطح دریا موجب تغییر در برخی مشخصه‌های کمی توده‌های جنگلی شده و بدین ترتیب گرادیان ارتفاع بر توزیع مقادیر زی‌توده روی زمینی مؤثر بوده، به‌طوری که با افزایش ارتفاع از سطح دریا، مقدار زیست‌توده نیز افزایش داشته و در این میان مقادیر زی‌توده روی زمینی، بیشترین همبستگی را با ارتفاع از سطح دریا نشان داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Determination the Effect of Altitude Gradient on Quantitative Characteristics of Forest Stands (Case Study: District-3 of Sangdeh Forests)

نویسندگان [English]

  • seyed mehdi rezaei sangdehi 1
  • Asghar Fallah 2
  • Jafar Oladi 2
  • Hooman Latifi 3
1 expert of forestry, farim wood co.
2 Associate Professor, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University
3 Faculty of Geodesy and Geomatics Engineering K. N. Toosi University of Technology
چکیده [English]

Background and objectives: Estimating the biomass and carbon content of trees and the other crops is important, in particular in context of global warming and climate change resilience and the determination of biomass in order to influence the climate and management of natural resources is essential. In forest areas with high altitudinal gradients, values of the quantitative characteristics of forest stands usually change. The purpose of this study was to determine the effect of altitudinal gradient on quantitative forest characteristics including number per hectare, basal area, standing volume, biomass and carbon storage in District-3 of Sangdeh Forests.
Materials and methods: The area was initially divided into three altitudinal levels, with a range of 1600-1400, 1600-1800 and 1800-2000 m altitude sea level 50 circular sample plots were randomly assigned to each level, resulting in a total sampled area of 10 ares (0.1ha) to cover each level. In each plot, species type, height and diameter at breast height were recorded for all trees with DBH > 7.5 cm. Then, the density of all species was determined by sampling followed by further analysis in laboratory. Then, the biomass was calculated in the sample plots based on the FAO global model.
Results: The results showed that altitude gradient from the bottom up, the number of trees per ha of 477, 384 and 372, the basal area of 25.58, 29.49 and 30.84 m2, respectively. Also the volume per ha were estimated to be of 314.25, 393.98 and 424.75 silve, respectively. The results this research showed the amount of AGB for all three altitudinal levels based on gradient increase is 406.68, 478.26 and 522.30 t ha-1, and carbon stock of 203/34, 239/12, and 261/15 ton per hectare, respectively, that shows an upward trend as the a.s.l. increases. The analysis of variance indicated a significant difference between the altitude and the characteristics (P < 0.05). In addition, Spearman correlation showed that there was a significant correlation between altitude and tree characteristics, basal area, standing volume, aboveground biomass per ha (p<0.01).
Conclusion: Conclusively, the results of this research in the study area show that changes in altitude from the sea level have caused changes in some of the quantitative characteristics and thus the elevation gradient has been effective on the distribution of AGB, so that with increasing a.s.l, the amount of AGB has also increased and AGB has the highest correlation with the altitude from the sea level.

کلیدواژه‌ها [English]

  • Altitude
  • Density
  • Aboveground Biomass
  • Sangdeh
  • Spearman Correlation
1.Azarnivand, H., and Zare Chahouki, M.A. 2010. Rangeland Ecology. Tehran Univ. Press, Tehran. 345p. (In Persian)
2.Bhat, J.A., Iqbal, K., Kumar, M., Negi, A.K., and Todaria, N. 2013. Carbon stock of trees along an elevational gradient in temperate forests of Kedarnath Wildlife Sanctuary. Forest Science and Practice. 15: 2. 137-143.
3.Bouriaud, O., Don, A., Janssens, I.A., Marin, G., and Schulze, E.D. 2019. Effects of forest management on biomass stocks in Romanian beech forests. Forest Ecosystems. 6: 19-34.
4.Chen, Y., Yang, X., Yang, Q., Li, D., Long, W., and Luo, W. 2014. Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. Plos One.9: 5. 1-10.
5.Cienciala, E., Apltauer, J., Exnerova, Z., and Tatarinov, F. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. J. of Forest Science. 54: 3. 109-120.
6.Christelle, G., Nicolas, P., Sylvie, G.F., Maxime, R., Vincent, F., Terry, S., Doyle M., and Charles, D. 2016. Altitudinal gradients of tree species diversity and above-ground biomass on a small montane of Atlantic Central Africa. Annual Meeting of the Association for Tropical Biology and Conservation (ATBC), Montpellier, France, 264p.
7.Cuni-Sanchez, A., Pfeifer, M., Marchant, R., Calders, K., Sorensen, C.L., Pompeu, P.V., Simon L. Lewis, S.L., and Burgess N.D. 2017. New insights on above ground biomass and forest attributes in tropical montane forests. Forest Ecology and Management. 399: 235-246.
8.Ebrahimi, M. 2004. Reviewing and evaluation of implementation of Sangdeh forest management plan. M.Sc. Thesis, Faculty of Natural Resources, University of Sari, Mazandaran, 76p. (In Persian)
9.Enayati, A.A. 2012. Wood physics. Tehran Univ. Press, Tehran. 256p. (In Persian)
10.FAO. 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper. 134p.
11.Fathollahi, M., Fallah, A., Hojjati, S.M., and Kalbi, S. 2017. Estimation of aboveground tree carbon stock
using SPOT-HRG data (a case study: Darabkola forests). J. of Forestry Research. 28: 6. 1177-1184.
12.Forests, Range and Watershed Management Organization of Iran. 2010. Forest Management Plan of district-3 of Sangdeh (Talar Sarband). Farim Wood Company, 321p. (In Persian)
13.Ghorbanli, M.L. 2002. Plant geography. Publishing Samt, 307p. (In Persian)
14.Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., Bernoux, M., and Saint-André, L. 2010. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management. 260: 1375-1388.
15.Khademi, A., Babaei, S., and Mataji, M. 2009. Investigation on the amount of biomass and it's relationship with physiographic and edaphic factors in oak coppice stand (Case study Khalkhal, Iran). Iranian J. of Forest. 1: 1. 57-67. (In Persian)
16.Ketterings, Q.M., Coe, R., Noordwijk, M.V., Ambagau, Y., and Palm, C.A. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management. 146: 199-209.
17.Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K., Plummer, S., Rocca, F., Saatchi, S., Shugart, H., and Ulander, L. 2011. The biomass mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment. 115: 2850-2860.
18.Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., and Moran, E. 2014. A survey of remote sensing based aboveground biomass estimation methods in forest ecosystems. International J. of Digital Earth. 9: 5. 1-43.
19.Mahmoudi Taleghani, E., Zahedi Amiri, Gh., Adeli, E., and Sagheb-Talebi, Kh. 2009. Assessment of carbon sequestration in soil layers of managed forest. Iranian J. of Forest and Poplar. 15: 3. 241-252. (In Persian)
20.Mani, S., and Parthasarathy, N. 2007. Above-ground biomass estimation in ten tropical dry evergreen forest sites
of peninsular India. Biomass and Bioenergy. 31: 284-290.
21.Mannan, A., Zhongke, F., Ullah Khan, T., Saeed, S., Amir, M., Asif Khan, M., and Tariq Badshah, M. 2018. Variation in tree biomass and carbon stocks with respect to altitudinal gradient in the Himalayan forests of Northern Pakistan. J. of Pure and Applied Agriculture.
22.McEwan, R.W., Lin, Y.C., Xian, J., Hsieh, C.F., Su, S.H., Chang, L.W., Song, G.Z.M., Wang, H.H., Hwong, J.L., Lin. K.C., and Yang, K.C.
2011. Topographic and biotic regulation of above ground carbon storage in subtropical broad-leaved forests
of Taiwan. Forest Ecology and Management. 262: 1817-1825.
23.Melillo, J.M., Steudler, P.A., Aber, J.D., Newkirk, K., Lux, H., and Bowles, F.P. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science. 298: 2173-2176.
24.Murphy, M., Balser, T., Buchmann, N., Hahn, V., and Potvin, C. 2008. Linking tree biodiversity to belowground process in a young tropical plantation: Impacts on soil CO2 flux. Forest Ecology and Management. 255: 2577-258.
25.Nagaike, T., Kamitani, T., and Nakashizuka, T. 1999. The effect of shelterwood logging on the diversity of plant species in a beech (Fagus crenata) forest: in Japan. Forest Ecology and Management. 118: 161-171.
26.Namiranian, M. 2007. Measurement of tree and forest biometry. Tehran Univ. Press, Tehran. 620p. (In Persian)
27.Navar, J. 2009. Allometric equations for tree species and carbon storage for forest of northwestern Mixico. Forest Ecology and Management. 257: 427-434.
28.Ribeiro, S., Fehrmann, L., Pedro Boechat Soares, C., Antônio Gonçalves Jacovine, L., Kleinn, C., and de Oliveira Gaspar, R. 2011. Above and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management. 262: 491-499.
29.Singh, V., Tewari, A., Kushwaha, S.P.S., and Dadhwal, V.K. 2011. Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. Forest Ecology and Management. 261: 1945-1949.
30.Sun, R., Chen, J., Zhou, M., and Liu, Y. 2004. Spatial distribution of net primary productivity and evapotranspiration in Changbaishan natural reserve. China, Using Landsat ETM data. Canadian J. of Remote sensing. 30: 731-742.
31.Thokchom, A., and Yadava, P. S. 2017. Biomass and carbon stock along an altitudinal gradient in the forest of Manipur, Northeast India. Tropical Ecology. 58: 2. 389-396.
32.Vahedi, A.A., and Mattagi, A. 2014. Amount of carbon sequestration distribution associated with oak tree’s (Quercus castaneifolia C.A. May) bole in relation to physiographical units of Hyrcanian natural forests of Iran. Iranian J. of Forests and Poplar Research. 21: 4. 716-728. (In Persian)
33.Vahedi, A. 2015. Optimal allometric biomass equations for Hornbeam (Carpinus betulus L.) boles within the Hyrcanian forests. Iranian J. of Forests and Poplar Research. 22: 2. 225-236.
34.Vando, T., Sato, T., Daihai, V., Thang, N.T., Binh, N.T., Son, N.H., and Thuyet, D.V. 2017. Aboveground biomass and tree species diversity along altitudinal gradient in Central Highland, Vietnam. Tropical Ecology. 58: 1. 95-104.
35.Wei, X., Wu, H., Meng, H., Pang, C., and Jiang, M. 2015. Regeneration dynamics of Euptelea pleiospermum along latitudinal and altitudinal gradients: Trade-offs between seedling and sprout. Forest Ecology and Management. 353: 232-
36.Yadav, R.P., Gupta, B., Bhutia, P.L., Bisht, J.K., and Pattanayak, A. 2019. Biomass and carbon budgeting of
land use types along elevation gradient in Central Himalayas. J. of Cleaner Production. 211: 1284-1298.
37.Zianis, D., and Mencuccini, M. 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management. 187: 311-332.
38.Zhu, B., Wang, X., Fang, W., Piao, S., Shen, H., Zhao, S., and Peng, C. 2010. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Carbon Cycle Process in East Asia. 123: 439-452.