تأثیر موخور بر کربوهیدرات، پرولین و کلروفیل در گونه‌های مختلف درختی جنگل‌های زاگرس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ایلام

2 عضو هیات علمی گروه علوم جنگل، دانشگاه ایلام

3 عضو هیات علمی، موسسه تحقیقات جنگلها و مراتع کشور

چکیده

سابقه و هدف: یکی از عوامل تهدید کننده جنگل‌های زاگرس وجود گونه نیمه‌انگلی موخور (Loranthus europeaus Jacq.) می-باشد که با اکثر گونه‌های درختی همزیستی دارد. پژوهش پیش‌رو به‌منظور بررسی تأثیر موخور بر کربوهیدرات، پرولین و کلروفیل در گونه‌های بلوط ایرانی (Quercus baantii Lindl.)، کیکم (Acer monspessulanum L.) و بادام (Amygdalus elaeagnifolia Spach) به‌عنوان میزبان‌های رایج موخور در جنگل‌های استان ایلام انجام شد.
مواد و روش‌ها: تعداد نه رویشگاه که آلودگی بیشتری را در استان ایلام داشتند، انتخاب شد. سپس از هر رویشگاه به‌طور تصادفی حداقل شش پایه با شرایط یکسان از نظر قطر، ارتفاع، شدت ابتلا به موخور و جهت یکسان از درختان بادام، بلوط ایرانی و کیکم انتخاب شد. سپس اقدام به برداشت برگ‌ها از شاخه‌های سالم و آلوده شد. از هر پایه، چهار نمونه برگ شامل برگ شاخه سالم درخت میزبان (I)، برگ درخت میزبان پایین‌تر از محل اثر موخور (B)، برگ درخت میزبان بالاتر از محل اثر موخور (A) و برگ موخور (M) نمونه‌گیری شدند و پس از انتقال به آزمایشگاه، مقدار کربوهیدرات، پرولین و کلروفیل آن‌ها اندازه‌گیری شد.
یافته‌ها: نتایج نشان داد که مقدار کلروفیل a و b و کربوهیدرات در گونه‌های بادام و بلوط ایرانی اختلاف معنی‌داری در موقعیت‌های مختلف گیاه موخور و شاخه‌های پایین‌تر و بالاتر از محل اثر موخور و سالم داشتند. همچنین، بیشترین مقدار کلروفیل a و b در گیاه موخور در دو گونه مذکور مشاهده شد. مقدار پرولین، کلروفیل و کربوهیدرات در موقعیت‌های پایین‌تر و بالاتر از محل اثر موخور، شاهد موخور و شاخه غیر آلوده اختلاف معنی‌داری در گونه کیکم نداشتند ولی بیشترین مقدار کربوهیدرات با 282/2 میلی‌گرم بر گرم و پرولین 552/0میکرومول بر گرم وزن تازه در گیاه موخور وجود داشت. گونه‌های مورد مطالعه از نظر میزان کلروفیل b در نمونه موخور و پایین-تر از محل اثر موخور اختلاف معنی‌داری را نشان دادند و بیشترین مقدار کلروفیل در این دو موقعیت متعلق به گونه بادام بود. در گونه بادام، بیشترین مقدار کربوهیدرات با 017/3 میلی‌گرم بر گرم در برگ موخور و نمونه پایین‌تر از محل اثر آن به میزان 99/2 میلی‌گرم بر گرم وجود داشت. در حالی‌که در بلوط ایرانی کمترین مقدار کربوهیدرات در گیاه موخور (159/2 میلی‌گرم بر گرم) و بیشترین مقدار آن پایین‌تر از محل اثر موخور (094/3 میلی‌گرم بر گرم) اتفاق افتاد. همچنین گونه‌های مورد بررسی در موقعیت بالاتر از محل اثر موخور از نظر کربوهبدرات با هم تفاوت داشتند و گونه بلوط ایرانی و کیکم به ترتیب با 12/3 و 55/2 میلی گرم بر گرم بیشترین و کمترین میزان را نشان دادند. گونه‌های مورد بررسی در موقعیت برگ موخور و پایین‌تر از محل اثر موخور از نظر پرولین نیز تفاوت معنی‌داری را نشان دادند و گونه بادام بیشترین مقدار پرولین را در این موقعیت‌ها داشت.
نتیجه‌گیری: مقدار کربوهیدرات و کلروفیل در برگ درختان بلوط و بادام پایین‌تر و بالاتر از محل اثر موخور به طور معنی‌داری متفاوت بود. به عبارت دیگر می‌توان گفت که گیاه نیمه انگلی موخور به عنوان یک تنش بیولوژیکی بر فعالیتهای فیزیولوژیکی درختان جنگلی تاثیر دارد که این اثرات در گونه‌های مختلف متفاوت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of Loranthus europeaus on Carbohydrate, proline and chlorophyll in different tree species of Zagros forest

نویسندگان [English]

  • JAVAD MIRZAEI 1
  • behroz naseri 1
  • HamidReza Naji 2
  • Mehdi Pourhashemi 3
1 ilam university
2 Ilam University
3 Associate Professor
چکیده [English]

Background and objectives: Loranthus europeaus Jacq. is a threatening factor in Zagros forests. It is seen on various tree species. This study was conducted to investigate the effect of continental mistletoe (Loranthus europeaus Jacq.) on carbohydrate, proline and chlorophyll content in Persian Oak (Quercus brantii Lindl.), Montpellier maple (Acer monspessulanum L.) and Almond (Amygdalus elaeagnifolia Spach.) as its common hosts in Ilam forests.
Materials and methods: Nine habitats with the mistletoe infested were selected in different forest areas of the Ilam province. From each habitat six infected trees of Quercus brantii, Acer monspessulanum and Amygdalus elaeagnifolia were sampled. These trees were in the same conditions of diameter, height, severity of infectious and aspect conditions. After that, the leaves were collected from healthy and infected branches. From each tree, four mature leaves were individually sampled from below and above the mistletoe clump in the host tree, the leaf of the mistletoe, and the leaf of the healthy branch of the host tree. For measuring the carbohydrate, proline and chlorophyll content, the leaves then transferred to the laboratory.
Results: The results showed that the content of chlorophyll a, b and carbohydrate in almond and Persian oak had significant different in the various position including below and above of mistletoe clump in the host tree, mistletoe leaves and uninfected branch. In addition, the highest levels of chlorophyll a and b were observed in the two mentioned-above tree species. A. monspessulanum species did not show significant difference in terms of proline, chlorophyll and carbohydrate in different sampling parts, but the highest amount of chlorophyll (2.282 mg/g) and proline (0.552μm/g) was determined in L. europeaus. A significant difference was seen between chlorophyll b values of L. europeaus and below the clump, and the highest amount of this feature was in almond. The highest amount of carbohydrate (3.017 mg/g) in the almond was in the mistletoe clump and tree leaves below it (2.99 mg/g). In Persian oak, the lowest (2.159 mg/g) and highest (3.094 mg/g) amount of carbohydrates was observed in the L. europeaus and oak leaves below the clump, respectively. Also, among the host trees, the leaves in the position above the mistletoe clump showed some differences and Q. brantii and A. monspessulanum had the most and lowest amount of carbo. The proline values were significantly different between mistletoe leaves and leaves of host trees. Highest amount of proline can attributed to the leaves of almond tree.
Conclusion: The amount of features like proline, carbohydrate and chlorophyll were significantly different in diverse sites as well as in different sample leaves. In other words, it can be said that the hemiparasite mistletoe as a biological stress affects the physiological activity of forest trees, which differs from one species to another.

کلیدواژه‌ها [English]

  • Hemiparasite
  • infested branch
  • Quercus brantii
  • Amygdalus elaeagnifolia
  • Acer monspessulanum
1. Ashraf, M., Azmi, A.R., Khan, A.H., and Ala, S.A. 1994. Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat. Acta Physiologiae Plantarum, 16(3): 185-191. (In Persian) 2. Azadbakht, N., Azadbakht, J., and Nazarei, H. 2011. Loranthus europaeus is a serious threat to Zagros forests (Lorestan). National Conference of Central Zagros forests; capabilities and bottlenecks, December. 9p. (In Persian) 3. Azizi, S., Kavosi, M. R., Rohebaksh, A., and Tageinasab, M. 2009. Identification of pathogens and spatial distribution Loranthus europaeus Species in Ilam Forests (Case Study: Gachan Area). Master's thesis. Gorgan Agriculture and Natural Resources University, 75 pages. (In Persian) 4. Biranvand, Z., Mosleh Arani, A., and kiani, B. 2016. Effect Review Loranthus europaeus on some mineral and organic species of the Acer monespessulanum and Amygdalus scoparia. Master's thesis, Yazd University, 69p. (In Persian) 5. Bates, L.S., Waldren, R.P., and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205-207. 6. Bamniya, B.R., Kapoor, C.S., and Kapoor, K. 2012. Harmful effects of air pollution on physiological activities of Pongamia pinnata L. Pierre, Clean Technologies Environmental Policy, 14(1): 115-124. 7. Briggs, J. 2003, Christmas curiosity or medical marvel? A seasonal Review of Mistletoe. Biologist, 50(6): 249-254. 8. Burke, J.J. 2007. Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay, Plant Physiology, 143(1): 108–121. 9. Delauney, A.S., Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plant. Plant Journal. 4: 215-223. 10. Galiano, L., Martinez-Vilata, J., and Lloret, F. 2010. Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Cooccurring Oak Species. Ecosystems, 13(7): 978-991. 11. Ghorbanli, M., Sateyi, A., and Kaboli Qarehtapeh, H. 2012. Effect of two species of mistletoe (Viscum album L. and Arceuthobium oxycedri (D.C.) M. Bieb.) on activity of antioxidant enzyme of infected host species in Gorgan forests. 28(2): 370-383. (In Persian) 12. Hoekstra, F.A., Golovina, E.A., and Buitink, J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9): 431-438. 13. Hmida-sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savoure, A., and Jaoua, S. 2005. Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169: 746–752. (In Persian) 14. Homaei, M. 2002. Plants response to salinity, National Committee on Irrigation and Drainage Press, Tehran, 97p. (In Persian) 15. Hosseini, A. 2013. Effect Loranthus europaeuson Some Morphological Characteristics and Elements of Iranian Oak Leaves in Zagros Forests (Case Study: Manish Southern Range Forests in Ilam Province). Journal of Natural Ecosystems of Iran, 4(2): 11-1. (In Persian) 16. Hosseini, A. 2015- a Effect of Loranthus europaeus contamination on potassium content of Leaves of trees Quercus brantii. The first sustainable development conference of the urban green space of Tabriz. 11th and 12th of September. (In Persian) 17. Hosseini, A. 2015 b. Changes in proline content leaves of trees Quercus brantii suffering from dryness Crown. Second National Conference on Natural and Environmental Conservation. Ardebil University Researcher. March 12th and March 13th. 5p. (In Persian) 18. Huber, S.C., and Huber, J.L. 1996. Role and regulation of sucrose-phosphate synthase in higher plants, Annual Review of Plant Biology, 47(1): 431-444. 19. Ingram, J., and Bartlet, D. 1996. The molecular basis of dehydration tolerance in plants. Annual review of plant biology, 47(1): 377-403. 20. Jiang, Y., and Huang, N. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antiaxdant metabolism and lipid peroxidation. Crop Science, 41: 436-442. 21. Kartulinezhad, D., Hosseini, M., Akbarinia, M., and Mirnia, S.K. 2008. Introduction of two methods of determining Loranthus europaeus and compare them to the Light Forest Park. Ecology, 46: 57-64. (In Persian) 22. Kartulinezhad, D., Hosseini, M., Akbarinia, M., and Mirnia, S.K. 2009. Effect Loranthus europaeus on of four nutrients and surface and leaves of host trees in Hirkani forests. Natural Resources of Iran, Year 61, Issue 1. (In Persian) 23. Levitt, J. 1980. Responses of plant to environmental stresses: water, radiation, salt and other stresses, Academic Press, New York, 698p. 24. Mahajan, S., and Tuteja, Cold, N. 2005.salinity and drought stresses: An overview. Arch Biochemical Biophys, 444: 139-158. 25. Matinizadeh, M., Korori, S.A.A., Khoshnevis, M., Teimouri, M., and Praznik, W. 2006. Seasonal changes of non-structural carbohydrates and amylase in twigs of Quercus brantii var. persica (Jaub. and Spach) Zohary. Iranian Journal of Forest and Poplar Research. 14(3): 269-277. 26. Mozaffarian, V. 2007. Flora Ilam province. Tehran contemporary culture. 936p. (In Persian) 27. Naseri, B., Karami, F., Naderi, F., and Salamat, E. 2011. An evaluation of showy mistletoe (Loranthus europaeus) infection of oak forests in Meyan tang, Ilam province. Iranian Journal of Forest and Range Protection Research. 8(2): 178-182. 28. Ögren, E. 2000. Maintenance respiration correlates with sugar but not nitrogen concentration in dormant plants. 299. Physiologia Plantarum, 108: 295. 29. Omidi, N., Seyedi, N., Banj Shafiei, N.A., and Abbaspour, N. 2015. Content of carbohydrates and proline of Oriental plane (Platanus orientalis L.) leaf in air pollution stress, case study: Urmia city. 1(2): 109-122. (In Persian) 30. Paknajad, F. 2005. Effect of Drought Stress on Indices Physiological performance and yield components of three wheat cultivars. Thesis PhD, Islamic Azad University, Science and Research Branch. (In Persian) 31. Paquin, R., and Lechasseur, P. 1979. Observations surunemethode dosage de la proline libredans les extraits de plantes. Canadian Journal of Botany, 57: 1851-1854. 32. Schutz, M., and Fangmeir, E. 2001. Growth and yield responses of spring wheat (triticum aestivum L. cv.Minaret) to elevated CO2 and water limitation. Environmental Pollution, 114: 187-194-282. 33. Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion Plant Biology, 10: 296-302. 34. Shariat, A., and Assareh, M.H. 2008. Effects of drought stress on pigments, prolin, soluble sugar and growth parameters on four eucalyptus species, Pajouhesh and Sazandegi in Natural Resources, 78: 139-148. (In Persian) 35. Shariat A., Assareh, M.H., and Ghamari-Zare, A. 2010. Effects of Cadmium on Some Physiological Characteristics of Eucalyptus occidentalis. The Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 14(53): 145-154 (In Persian) 36. Sohrabi Siraj, B., Kidalri, H., Akhavan, R., and Babaei Katafi, S. 2014. Investigation of spatial variations and zonation of forest contamination in Loranghus europaeus in Zagros forests. Research and conservation of forests and rangelands of Iran, 12(2): 1-12. (In Persian) 37. Unyayar, S., Keles, Y., and Unal, E. 2004. Proline and ABA levels in two sunflower genotype subjected to water stress. Plant Physiology, 30: 34-47. 38. Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J.H., and Zhu, J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal. 45: 523–539. 39. Wise, R.R., and Naylor, A.W. 1989. Chillingenhanced Peoxidative photo-oxidation, the destruction of lipids during chilling injury tophotosynthesis and ultrasracture. Plant Physiology, 83: 278-282.