1.Ahmadi, D., Hosseini, V., & Mohammadi Samani, K. (2023). Comparison effect of prescribed heat on some chemical properties of soil under Persian oak (Quercus brantii Lindl.) in laboratory conditions. Iranian Journal of Forest.
14(4), 457-471. Doi: 10.22034/ijf.2022. 330327.1852. [In Persian]
2.Barlow, J., Lennox, G., Ferreira, J. et al. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature. 535, 144-147. https://doi.org/10.1038/ nature18326.
3.Moradi, B., Ravanbakhsh, H., Meshki, A., & Shabanian, N. (2016). The effect of fire on vegetation structure in Zagros forests (Case Study: Sarvabad, Kurdistan province). Iranian Journal of Forest. 8(3), 381-392. [In Persian]
4.Podur, J., Martell, D. L., & Knight, K. (2002). Statistical quality control analysis of forest fire activity in Canada. Canadian Journal of Forest Research. 32, 195-205. https://doi.org/10.1139/x01-18.
5.Bo, M., Mercalli, L., Pognant, F., Berro, D. C., & Clerico, M. (2020). Urban air pollution, climate change, and wildfires: The case study of an extended forest fire episode in northern Italy favoured by drought and warm weather conditions, Energy Reports. 6(1), 781-786.
6.Law, B. E., Sun, O. J., Campbell, J.,
van Tuyl, S., & Thornton, P. E. (2003). Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology. 9(4), 510-524. https://doi.org/10.1046/j.1365-2486.2003. 00624.x.
7.Fornwalt, P. J., Kaufmann, M. R., Huckaby, L. S., Stoker, J. M., & Stohlgren, T. J. (2003). Nonnative plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range. Forest Ecology and Management. 177(1-3), 515-527.
8.Zhao, P., Zhang, F., Lin, H., & Xu, S. (2021). GIS-based forest fire risk model: A case study in Laoshan National
Forest Park. Nanjing. Remote Sensing. 13(18), 3704. https://doi.org/10.1016/ j.ejrs.2016.07.001.
9.Eshaghi, M. A., & Shataee Joybari, S. (2016). Preparation map of forest fire risk using SVM, RF & MLP algorithms
(case study: Golestan National Park, Northeastern Iran). Journal of Wood and Forest Science and Technology.
23(4), 1333-154. Doi: 10.22069/jwfst. 2016.9297.1496. [In Persian]
10.Bentekhici, N., Bellal, S., & Zegrar, A. (2020). Contribution of remote sensing and GIS to mapping the fire risk of the Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Nat Hazards. 104, 811-831. https://doi. org/10.1007/s11069-020-04191-6.
11.Sari, F. (2021). Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: a comparative analysis of VIKOR and TOPSIS. Forest Ecology and Management. 480, 118644. https://doi.org/10.1016/j. foreco.2020.118644.
12.Sivrikaya, F., & Kucuk, O. (2022). Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in the Mediterranean region. Ecological Informatics. 68, 101537. https:// doi.org/ 10.1016/ j.ecoinf.2021. 101537.
13.Abedi Gheshlaghi, H. A., Feizizadeh, B., & Blaschke, T. (2020). GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. Journal of Environmental Planning and Management. 63(3), 481-499. https://doi. org/10.1080/09640568.2019.1594726.
14.Tuyen, T. T., Jaafari, A., Yen, H. P. H., Nguyen-Thoi, T., Van Phong, T., Nguyen, H. D., Van Le, H., Phuong,
T. T. M., Nguyen, S. H., & Prakash, I. (2021). Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecological Informatics.
63, 101292. https://doi.org/10.1016/j. ejrs.2016.07.001.
15.Abdo, H. G., Almohamad, H.,
Al-Dughairi, A. A., & Al-Mutiry, M. (2022). GIS-based frequency ratio and analytic hierarchy process for forest fire susceptibility mapping in the Western Region of Syria. Sustainability. 14, 4668. https://doi.org/10.3390/su14084668.
16.Beygi Heidarlou, H., Banj Shafiei, A., & Erfanian, M. (2014). Forest fire risk mapping using analytical hierarchy process technique and frequency ratio method (Case study: Sardasht Forests, NW Iran). Iranian Journal of Forest
and Poplar Research. 22(4), 559-573. [In Persian]
17.Jaafari, A., & Mafi Gholami, D. (2017). Wildfire hazard mapping using an ensemble method of frequency ratio with Shannon’s entropy. Iranian Journal of Forest and Poplar Research.
25(2), 232-243. Doi: 10.22092/ijfpr. 2017.111758. [In Persian]
18.Kayet, N., Chakrabarty, A., Pathak, Kh., Sahoo, S., Dutta, T., & Hatai, B. K. (2020). Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) forest. Journal of Forestry Research. 31, 565-579. https://doi.org/ 10.1007/s11676-018-0826-z.
19.De Santana, R., Delgado, R. C., & Schiavetti, A. (2021). Modeling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method. Journal of Environmental Management. 296(113343), 1-10. https://doi.org/10. 1016/j.jenvman.2021.113343.
20.Eskandari, S., Pourghasemi, H. R., & Tiefenbacher, J. P. (2020). Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecology and Management. 473, 118338. https://doi. org/10.1016/j.foreco.2020.118338.
21.Sagheb-Talebi, Kh., Sajedi, T., & Pourhashemi, M. (2013). Forests of Iran: A treasure from the past, a hope for the future. Springer.
22.Goshtasb, H., Ataei, F., Jahani, A., Sofi, M., & Ahmadi, N. (2016). The influence of vegetation characteristics on roe deer habitat selection in Bozin and Markheil Protected Area. Journal of Natural Environment, 69(3), 803-820. Doi: 10. 22059/jne.2016.61881.
23.Momeni, M., & Imeni Gheshlagh, S. (2019). The role of protected areas in the development of ecotourism (Case Study of Miankaleh Wildlife Refuge Using SWOT Model). Geography and Human Relationships. 2(1), 369-387. [In Persian]
24.McCarthy, C., Banfill, J., & Hoshino, B. (2021). National parks, protected areas, and biodiversity conservation in North Korea: opportunities for international collaboration.
Journal of Asia-Pacific Biodiversity. 14, 290298.
https://doi. org/10.1016/j.japb.2021.05.006.
25.Asadi, F., Etemad, V., Moradi, Gh., & Sepahvand, A. (2018). Effect of different irrigation and shade treatments on seedling production of Celtis caucasica Willd. Iranian Journal of Forest. 10(1), 67-77. [In Persian]
26.Khalili, F., Sadeghi, M., & Malekian, M. (2018). Habitat suitability modelling of Persian squirrel (Sciurus anomalus) in Zagros forests, western Iran. Journal of Wildlife and Biodiversity. 2(2), 56-64.
27.Sadeghi, M., Malekian, M., & Khodakarami, L. (2017). Forest losses and gains in Kurdistan province, western Iran: where do we stand? The Egyptian Journal of Remote Sensing and Space Science. 20, 51-59. https://doi.org/10. 1016/j.ejrs.2016.07.001.
28.Mohammadi, F., Shabanian, N., Pourhashemi, H., & Fatehi, P. (2010). Risk zone mapping of forest fire using GIS and AHP in a part of the Paveh forests. Iranian Journal of Forest
and Poplar Research. 18(4), 586-569. [In Persian]
29.Eskandari, S., & Sarab, S. A. M. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth, and field data. Ecological Informatics. 70, 101727.
30.Ebrahimy, H., Rasuly, A., & Mokhtari, D. (2017). Development of a web GIS system based on the MaxEnt approach for wildfire management: A case
study of East Azerbaijan. Ecopersia.
5(3), 1859-1873. http://dorl.net/dor/ 20.1001.1.23222700.2017.5.3.3.5.
31.Shafiei, A., Beygi Heidarlu, H., & Erfanian, M. (2015). Evaluating the fuzzy weighted linear combination method in forest fire risk mapping (Case study: Sardasht forests, West Azerbaijan province, IRAN). Journal of Wood and Forest Science and Technology. 22(3), 29-52. [In Persian]
32.Rasool, R., Fayaz, A., ul Shafiq, M., Singh, H., & Ahmed, P. (2021). Land use land cover change in the Kashmir Himalaya: Linking remote sensing with an indicator-based DPSIR approach. Ecological Indicators. 125, 107447. https://doi.org/10.1016/j.ecolind.2021.107447.
33.Pham, Q. B., Ali, S. A., Parvin, F.,
Van On, V., Sidek, L. M., Durin, B., ... & Minh, N. N. (2024). Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using random forest trees and artificial neural networks.
Advances in space research. 74(1), 17-47.
https://doi.org/10.1016/j. asr.2024.03.027.
34.Mahmoodi, M. A., Momeni, S., & Davari, M. (2019). Application of support vector machines for land use and land cover classification from Landsat ETM imagery. Water and Soil. 32(6), 1179-1190. https://doi.org/10. 22067/jsw.v32i6.72967. [In Persian]
35.Pande, C. B., Diwate, P., Orimoloye,
I. R., Sidek, L. M., Pratap Mishra, A., Moharir, K. N., Pal, S. C., Alshehri, F., & Tolche, A. D. (2024). Impact of land use/land cover changes on evapotranspiration and model accuracy using Google Earth Engine and classification and regression tree modeling. Geomatics, Natural Hazards and Risk. 15(1), 2290350. https://doi. org/10.1080/19475705.2023.2290350.
36.Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., & Aryal, J. (2019). Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire. 2(3), 50. https://doi.org/10.3390/ fire2030050.
37.Anticona, A., Zuniga, C., Santos, A., Lorenzon, A., & Filho, P. (2023). GIS and fuzzy logic approach for forest
fire risk modeling in the Cajamarca
region, Peru. Decision Science Letters. 12(2), 353-368.
38.Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of cartography. 7, 186-190.
39.Jaiswal, R. K., Mukherjee, S., Raju,
K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation. 4(1), 1-10. https://doi. org/10.1016/S0303-2434(02)00006-5.
40.Dong, X. U., Li-min, D. A. I., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research. 16(3), 169-174. https://doi. org/10.1007/BF02856809.
41.Polat, S., Ghasemi Aghbash, F., & Mahdavi, A. (2020). Forest fire hazard zone mapping in Ilam County forests. Forest Research and Development.
6(1), 135-152. Doi: 10.30466/jfrd. 2020.120830. [In Persian]
42.Alimahmoodisarab, S., Feghhi, J., & Khaje, S. (2018). Determination of the effective criteria of forest fire occurrence by using GIS and ANN (Case study: Golestan province). Journal of Wood and Forest Science and Technology. 25(2), 110-136. Doi: 10.22069/jwfst. 2018.5611.1339. [In Persian]
43.Veena, H. S., Ajin, R. S., Loghin, A. M., Sipai, R., Adarsh, P., Viswam, A., Vinod, P. G., Jacob, M. K., & Jayaprakash, M. (2017). Wildfire risk zonation in a tropical forest division in Kerala, India: A study using geospatial techniques. International Journal of Conservation Science. 8(3), 475-484.
44.Jaafari, A., Pazhouhan, I., & Bettinger, P. (2021). Machine learning modeling of forest road construction costs. Forests. 12(9), 1169. https://doi.org/10.3390/ f12091169.
45.Jaafari, A., Zenner, E. K., & Pham, B. T. (2018). Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree-based classifiers.
Ecological Informatics. 43, 200-211.
https://doi.org/10.1016/j. ecoinf.2017.12.006.
46.Geng, M., Ma, K., Sun, Y., Wo, X., & Wang, K. (2020). Changes of land use/cover and landscape in Zhalong wetland as “red-crowned cranes country”, Heilongjiang province, China. Global Nest Journal. 22(4), 477-483. https://doi.org/10.30955/gnj.003372.
47.Eskandari, S. (2017). A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran. Arabian Journal of Geosciences. 10, 190. https://doi.org/10.1007/s 12517-017-2976-2.
48.Biglari-Gholdare, S., Tahmasabi, P., Rahmani, M., Karimifam, A., & Golmohammadi Ghane, P. (2024). Assessment of forest fire risk in Mazandaran province using the Fuzzy AHP model.
Ecology of Iranian Forest. 12(2), 88-103.
https://doi.org/10.61186/ ifej.12.2.88. [In Persian]
49.Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. (2010). Fire risk evaluation using multicriteria analysis case study. Environmental Monitoring and Assessment. 166(1-4), 223-239. https:// doi.org/ 10.1007/ s10661-009-0997-3.
50.Darvishi, L., Ghodskhah, M., & Gholami, V. (2013). A regional model for forest fire hazard zonation in forests of Dorud city (Case Study: Babahar region), Iranian Journal of Forest and Range Protection Research. 11(1), 10-20. https://doi.org/10.22092/IJFRPR.2013.106396. [In Persian]
51.Zarekar, A., Kazemi Zamani, B., Ghorbani, S., Ashegh Moalla, M., & Jafari, H. R. (2013). Mapping spatial distribution of forest fire using MCDM and GIS (Case study: Three forest
zones in Guilan province).
Iranian Journal of Forest and Poplar Research. 21(2), 218-230.
https://doi.org/10.22092/ IJFPR.2013.3854. [In Persian]
52.Tiwari, A., Shoab, M., & Dixit, A. (2021). GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process, and fuzzy modeling techniques.
Natural hazards. 105, 1189-1230.
https://doi.org/ 10.1007/s11069-020-04351-8.
53.Pourtaghi, Z. S., Pourghasemi, H. R., & Rossi, M. (2015). Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences. 73(4), 1515-1533. https:// doi.org/10.1007/s12665-014-3502-4.
54.Dashti, S., Amini, J., Ahmadi Sani, N., & Javanmard, A. (2022). Zoning areas prone to fire occurrences in the forest ecosystems of North Zagros (Case study: Sardasht forests in West Azarbaijan).
Journal of Natural Environmental Hazards. 10(30), 105-126.
https://doi. org/10.22111/JNEH.2021.34965.1683. [In Persian]
55.Mirdeylami, T., Shataee, Sh., & Kavousi, M. R. (2014). Forest fire risk zone mapping in the Golestan National Park using the weighted linear combination (WLC) method. Iranian Journal of Forest. 5(4), 377-390. [In Persian]
56.Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., & Semeraro, T. (2016). Investigation of general indicators influencing forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators. 64, 72-84. https://doi.org/ 10.1016/j.ecolind.2015.12.030.