1.Wu. J., Wu. Y., Yang, F., Tang, C., Huang, Q., & Zhang, J. (2019). Impact of delignification on morphological, optical and mechanical properties of transparent wood. Composites Part A: Applied Science and Manufacturing. 117: 324-331. DOI: 10.1016/j.compositesa.2018.12.004.
2.Montanari, C., Ogawa, Y., Olsen, P., & Berglund, L. A. (2021). High performance, fully bio-based, and optically transparent wood biocomposites. Advanced Science. 8, 2100559. DOI:10.1002/advs.202100559.
3.Mi, R., Chen, C., Keplinger, T., Pei, Y., He, S., Liu, D., Li, J., Dai, J., Hitz, E., & Yang, B. (2020). Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications.
11, 1-9. https://doi.org/10.1038/s41467-20-17513-w.
4.Jia, C., Chen, C., Mi, R., Li, T., Dai, J., Yang, Z., Pei, Y., He, S., Bian, H., & Jang, S. H. (2019). Clear wood toward high-performance building materials. ACS Nano. 13, 9993-10001. DOI:10.1021/ acsnano.9b00089.s001.
5.Wang, K., Dong, Y., Ling, Z., Liu, X., Shi, S. Q., & Li, J. (2021). Transparent wood developed by introducing epoxy vitrimers into a delignified wood template. Composites Science and Technology Journal. 207, 108690. DOI: 10.1016/j. compscitech.2021.108690.
6.Vasileva, E., Chen, H., Li, Y., Sychugov, I., Yan, M., Berglund, L., & Popov, S. (2018). Light scattering by structurally anisotropic media: a benchmark with transparent wood. Advanced Optical Materials, 6, 1800999. DOI: 10.1002/ adom.201800999.
7.Li, Y., Fu, Q., Yang, X., & Berglund, L. (2018). Transparent wood for functional and structural applications. Philosophical Transactions of the Royal Society. 376, 20170182. DOI:10.1098/rsta.2017. 0182.
8.Sheng, X., Zhang, Ch., Pan, N., Shi, R., Jia, H., Zhang, J., Li, N., Shi, H., Wang, B., & Ping, Q. (2024). Multidimensional quantitative analysis of process parameters and performance of lignin-based sustainable transparent wood: Response surface analysis, linear analysis, and life cycle assessment. ACS Applied Polymer Materials. 7(17), 301058-301072. DOI:10.1021/acsapm.5c02145.
9.Mi, R., Li, T., Dalgo, D., Chen, C., Kuang, Y., He, S., Zhao, X., Xie, W., Gan, W., & Zhu, J. (2020). A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials. 30, 1907511. DOI:10.1002/adfm.202001291.
10.Zhang, L., Wang, A., Zhu, T., Chen, Zh., Wu, Y., & Gao, Y. (2020). Transparent wood composites fabricated by impregnation of epoxy resin and W-Doped VO2 nanoparticles for application in energy-saving windows. ACS Applied Materials & Interfaces. 12(31), 34777-34783.
11.Li, Y., Fu, Q., Yu, S., Yan, M., & Berglund, L. (2016). Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecular Journal. 17, 1358-1364.
12.Wang, X., Zhan, T., Liu, Y., Shi, J., Pan, B., Zhang, Y., Cai, L., & Shi, S. Q. (2018). Large-size transparent wood for energy-saving building applications. ChemSusChem, 11, 4086-4093.
13.Li, Y., Fu, Q., Rojas, R., Yan, M., Lawoko, M., & Berglund, L. (2017). Lignin-retaining transparent wood. ChemSusChem, 10, 3445-3451.
14.Li, T., Zhu, M., Yang, Z., Song, J., Dai, J., Yao, Y., Luo, W., Pastel, G., Yang, B., & Hu, L. (2016). Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Advanced Energy Materials. 6, 1601122.
15.Wu, J., Shi, Y., Wen, X., Zhang, W., Zhao, D., Liu, L., & Duan, J. (2024). Ultraviolet-Shielded Transparent Wood with Improved Interface for Insulating Windows. ACS Applied Materials & Interfaces. 17(2), 3146-3157.
16.Rao, A. N. S., Nagarajappa, G. B., Nair, S., Chathoth, A. M., & Pandey, K. K. (2019). Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Composites Science and Technology. 182, 107719.
17.TAPPI. (2002). Acid-insoluble lignin in wood and pulp (T 222 om-02). TAPPI Press.
18.TAPPI. (2013). Kappa number of pulp (T 236 om-13). TAPPI Press.
19.Li, Z., Li, L., Li, L., Zhu, J. Y., & Li, Z. (2022). Transparent Wood Developed by a Fast and Scalable Method Using UV-Curable Polyurethane. Industrial Engineering Chemistry Research. 61(18), 6055-6065.
20.Wang, K., Liu, X., Dong, Y., Ling, Z., Cai, Y., Tian, D., Fang, Z., & Li, J. (2022). Editable shape-memory transparent wood based on epoxy-based dynamic covalent polymer with excellent optical and thermal management for smart building materials. Cellulose. 29, 7955-7972.
21.Gong, L. X., Pei, Y. B., Han, Q. Y., Zhao, L., Wu, L. B., Jiang, J. X., & Tang, L. C. (2016). Polymer grafted reduced graphene oxide sheets for improving stress transfer in polymer composites. Composites Science and Technology. 134, 144-152.
22.Yusof, N. S. M., Dewi, D. E. O., Salih, N. M., Supriyanto, E., Syahrom, A., & Faudzi, A. A. M. (2016). Epoxy resin characterization for imaging phantom: X-ray, textural, and mechanical properties. In: IEEE EMBS conference on biomedical engineering sciences. Pp: 617-622.
23.Jain, N., Singh, V. K., & Chauhan, S. (2017). A review on mechanical and water absorption properties of polyvinyl alcohol-based composites/films. Journal of the Mechanical Behavior of Biomedical Materials. 26, 213-222.
24.Seghir, R., & Pierron, F. (2018). A novel image-based ultrasonic test to map material mechanical properties at high strain-rates. Experimental Mechanics, 58, 183-206. DOI:10.1007/s11340-017 03294.
25.Zhu, M., Li, T., Davis, C. S., Yao, Y., Dai, J., Wang, Y., AlQatari, F., Gilman, J. W., & Hu, L. (2016). Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy. 26, 332-339.
26.Jele, T. B., Andrew, J., John, M., & Sithole, B. (2023). Engineered transparent wood composites: a review. Cellulose, 30, 5447-5471.
27.Zhu, M., Song, J., Li, T., Gong, A., Wang, Y., Dai, J., Yao, Y., Luo, W., Henderson, D., & Hu, L. (2016). Highly anisotropic, highly transparent wood composites. Journal of Advanced Materials. 28, 5181-5187.
28.Yu, Z., Yao, Y., Yao, J., Zhang, L., Chen, Z., Gao, Y., & Luo, H. (2017). Transparent wood containing Cs x WO3 Nanoparticles for heat-shielding window applications. Journal of Materials Chemistry. 5, 6019-6024.
29.Wang, M., Li, R., Chen, G., Zhou, S., Feng, X., Chen, Y., He, M., Liu, D., Song, T., & Qi, H. (2019). Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents. ACS Applied Materials & Interfaces Journal. 11, 14313-14321.
30.Fu, Q., Yan, M., Jungstedt, E., Yang,
X., Li, Y., & Berglund, L. A. (2018). Transparent plywood as a load-bearing and luminescent biocomposite. Composites Science and Technology. 164, 296-303.
31.Jin, W., Singh, K., & Zondlo, J. (2013). Pyrolysis Kinetics of Physical Components of Wood and Wood-Polymers Using Isoconversion Method. Agriculture. 3, 12-32.
32.Bodîrlău, R., Teacă C. Aو. & Spiridon I. (2008). Chemical modification of beech wood: Effect on thermal stability. BioResources. 3(3), 789-800.
33.Antczak, A., Michaluszko, A., Klosinska, T., & Drozdzek M. (2013). Determination of the structural substances content in the field maple wood (Acer campestre L.) – comparison of the classical methods with instrumental. Forestry and Wood Technology. 82, 11-17.