1.Najafifar, A., Sagheb-Talebi, K., & Saeb, K. (2012). The role of light intensity on survival of Quercus branti saplings in relation to slope aspect and distance from seed trees in Ilam province forests. Journal of Forest and Wood Products.
64 (4), 1-14.
2.Zeynali Yadegari, L., & Seyedi, N. (2019). Effect of altitude on seed germination and biomass of Quercus brantii. Journal of Forest Research and Development. 5 (3), 405-417.
3.Rahimi, GH., Mohammadi Samani, K., Shabanian, N., & Shfie Rahmani, M. (2020). Investigation of some chemical properties of soil in two glazed and less disturbed forest stands in North Zagros (Case study: forests of Baneh basin, Kurdistan province). Environmental Science and Technology. 22 (3), 68-55.
4.Salmani, A., Poursaeed, A. R., Bayramzadeh, V., & Eshraghi Samani, R. (2021). Explaining the criteria and indicators of sustainable management of forests in the Zagros basin from the point of view of forest specialists and experts. Iranian Journal of Forest. 13 (1), 43-58.
5.Fattahi, M. (1994). Investigation of Zagros oak forests and the most important factors of its destruction. Research Institute of Forests and Rangelands. Tehran press.
6.Bourque, C. P. A., Bayat, M., & Zhang, C. (2019). An assessment of height–diameter growth variation in an unmanaged Fagus orientalis-dominated forest. European Journal of Forest Research. 138, 607-621.
7.Sirkia, S., Heinonen, J., Miina, J., & Eerikäinen, K. (2015). Subject-specific prediction using a nonlinear mixed model: Consequences of different approaches. Forest Science. 61, 205-212.
8.Ozçelik, R., Diamantopoulou, M. J., Crecente-Campo, F., & Eler, U. (2013). Estimating crimean juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management. 306, 52-60.
9.Zhou, R., Wu, D., Fang, L., Xu, A., & Lou, X. (2018). A Levenberg–Marquardt backpropagation neural Network for predicting forest growing stock based on the least-squares equation fitting parameters. Forests. 9, 757.
10.Bayat, M., Hasani, M., & Heidari Masteali, S. (2020). Ten-year estimation of Fagus orientalis Lipsky increment using artificial neural networks model and multiple linear regression Ramsar Forests. Journal of Forest Research and Development. 6 (3), 381-394.
11.Golob, Ch., Ritter, T., Vosptnic, S., Wassermann, C., & Nuthtroft, A. (2018). A flexible height–diameter model for tree height imputation on forest inventory sample plots using repeated measures from the past. Journal Forests. 9 (368), 1-25.
12.Hamidi, S. K., Fallah, A., Bayat, M., & Hosseini Yekani, S. A. (2021). Investigating the diameter and height models of beech trees in uneven age forest of northern Iran (Case study: Farim Forest). Ecology of Iranian Forests, 9 (17), 30-40.
13.Ahmadi, K., Alavi, S. J., Kouchaksaraei, M. T., & Aertsen, W. (2013). Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests, Iran. Biotechnology. Agronomy, Society, and Environment. 17, 431-440.
14.Alemi, A., Oladi, J., Fallah, A., & Maghsodi, Y. (2021). Evaluating different height-diameter nonlinear models for hornbeams in uneven-aged stands (Case study: Golestan Rezaeian Forest). Ecology of Iranian Forests. 8 (16), 29-38.
15.Bolat, F., Urker, O., & Günlü, A. (2022). Nonlinear height-diameter models for Hungarian oak (Quercus frainetto Ten.) in Dumanlı Forest Planning Unit, Anakkale/Turkey. Austrian Journal of Forest Science. 139, 199-220.
16.Wang, T. Y., & Lam, T. Y. (2021). Modeling the height-diameter relationship of fifteen tree species planted on reclaimed agricultural lands with random species effects. Tropical Forestry. 1053, 1-5.
17.Tabassum, A., Jeelani. M. L., & Sharma, M. (2023). Predictive Modelling of height and diameter relationships of Himalayan chir Pine. Agricultural Science Digest. 43 (2), 170-175.
18.Ercanli, I. (2020). Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. Forest Ecosystems. 7 (12), 2-18.
19.Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems. 13 (2), 87-129.
20.Hoseinian, F. S., Faradonbeh, R. S., Abdolahzadeh, A., Rezai, B., & Soltani-Mohammadi, S. (2017). Semi-autogenous mill power model development using gene expression programming. Powder Technology. 308, 61-69.
21.Delpasand, S., Maleknia, R., & Kazemi, Y. (2017). Evaluating the impact of climatic factors on vegetation changes in the protected area of Sefid Koh Lorestan using the MODIS sensor. Conference: National Geomatics Conference. pp. 1-10.
22.Zakaria, N. A., Azamathulla, H. M., Chang, C. K., & Ghani, A. A. (2010). Gene expression programming for total bed material loud estimation-a case study. Science of the Total Environment. 408 (21), 5078-5085.
23.Amiri, P., Soosani, J., & Naghavi, H. (2024). Investigating diameter-height models of Persian oak (Quercus brantii Lindl.) in height forests of Middle Zagros. Forest Research and Development. 10 (1), 19-38.
24.Bihamta, M. R., & Zare Chahouki, M. R. (2008). Principles of statistics for the natural resource. University of Tehran Press. 322p.
25.Gonzalez, M. S., Canellas, I., & Montero, G. (2007). Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain. Forest Systems. 16 (1), 76-88.
26.Ahmadi, K., & Alavi, S. J. (2016). Generalized height-diameter models for Fagus orientalis Lipsky in Kyrcanian forest, Iran. Journal of Forest Science. 62 (9), 413-421.
27.Dey, T., Ahmed, Sh., & Islam, M. D. A. (2021). Relationships of tree height-diameter at breast height (DBH) and crown diameter-DBH of Acacia auriculiformis plantation. Asian Journal of Forestry. 5 (2), 71-75.
28.Tuan, N. T., Dinh, T. T., & Long, Sh. H. (2019). Height-diameter relationship for Pinus koraiensis in Mengjiagang Forest Farm of Northeast China using nonlinear regressions and artificial neural network models. Journal of Forest Science.
65 (4), 134-143.
29.Adame, P., Del Rio, M., & Canellas, I. (2008). A mixed nonlinear height–diameter model for Pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management. 256, 88-98.
30.Sharma, R. P., Vacek, Z., & Vacek, S. (2016). Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. Journal of Forest Science.
62 (10), 470-484.
31.Ghaderi, P., Mohammadi, J., Shataee, Sh., Rahmani, R., & Kariminejad, N. (2023). The efficiency of nonlinear mixed-effects model in determining height-diameter equations of velvet maple and ironwood trees. Iranian Journal of Forest. 14 (4), 473-485.
32.Ebrahimi, F., Nakhai, M., Naseri, H. R., & Khodai, K. (2021). Estimation of LNAPL height in oil-contaminated aquifers using GEP, ANFIS, MLR. Iranian Geology Quarterly. 15 (57), 29-43.