1.Keirouz, A., Wang, Z., Reddy, V. S., Nagy, Z. K., Vass, P., Buzgo, M., Ramakrishna, S., & Radacsi, N. (2023). The history of electrospinning: past, present, and future developments. Advanced Materials Technologies. 8 (11), 2201723.
2.Ji, D., Lin, Y., Guo, X., Ramasubramanian, B., Wang, R., Radacsi, N., & Ramakrishna, S. (2024). Electrospinning of nanofibres. Nature Reviews Methods Primers. 4 (1), 1.
3.Borban, B., Gohain, M.B., Yadav, D., Karki, S., & Ingole, P.G. (2023). Nano-Electrospun Membranes: Green Solutions for Diverse Industrial Needs. J. of Hazardous Materials Advances, 100373.
4.Mhetre, H., Kanse, Y., & Chendake, Y. (2023). Influence of Electrospinning Voltage on the Diameter and Properties of 1-dimensional Zinc Oxide Nanofiber. ES Materials & Manufacturing. 20, 838.
5.Aneem, T. H., Firdous, S. O., Anjum, A., Wong, S. Y., Li, X., & Arafat, M. T. (2024). Enhanced wound healing of ciprofloxacin incorporated PVA/alginate/ PAA electrospun nanofibers with antibacterial effects and controlled drug release. Materials Today Communications. 38, 107950.
6.Rufato, K. B., Veregue, F. R., de Paula Medeiro, R., Francisco, C. B., Souza, P. R., Popat, K. C., & Martins, A. F. (2023). Electrospinning of poly (vinyl alcohol) and poly (vinyl alcohol)/tannin solutions: A critical viewpoint about cross-linking. Materials Today Communications. 35, 106271.
7.Sharma, R., Malviya, R., Singh, S., & Prajapati, B. (2023). A critical review on classified excipient sodium-alginate-based hydrogels: Modification, characterization, and application in soft tissue engineering. Gels. 9 (5), pp. 430.
8.Wang, H., Kong, L., & Ziegler, G. R. (2019). Fabrication of starch-nanocellulose composite fibers by electrospinning. Food Hydrocolloids, 90, 90-98.
9.Pasaoglu, M. E., & Koyuncu, I. (2021). Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: A review and future outlook. Chemosphere. 269, 128710.
10.Yan, J., Bai, T., Yue, Y., Cheng, W., Bai, L., Wang, D., ... & Han, G. (2022). Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/ nanocellulose. Composites Science and Technology. 224, 109490.
11.Afra, S., Samadi, A., Asadi, P., Bordbar, M., Iloukhani, M., Rai, A., & Aghajanpour, M. (2024). Chitosan crosslinkers and their functionality in 3D bioprinting to produce chitosan-based bioinks. Inorganic Chemistry Communications. 112842.
12.Lim, D.J. (2022). Cross-linking agents for electrospinning-based bone tissue engineering. International J. of Molecular Sciences. 23 (10), 5444.
13.Ehrmann, A. (2021). Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine-a review. Polymers. 13, 1973. 22p.
14.Nataraj, D., Reddy, R., & Reddy, N. (2020). Crosslinking electrospun poly (vinyl) alcohol fibers with citric acid
to impart aqueous stability for medical applications. European Polymer J.124, 109484.
15.Zhan, F., Yan, X., Li, J., Sheng, F., & Li, B. (2021). Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chemistry. 337, 127763.
16.Ge, H., & Wang, M. (2023). Raman Spectrum of the Li2SO4-MgSO4-H2O System: Excess Spectrum and Hydration Shell Spectrum. Molecules. 28, 7356. 13p.
17.Sarker, M., Izadifar, M., Schreyer, D., & Chen, X. (2018). Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Pads. J. of Biomaterials Science, Polymer Edition. 29 (10), 1126-1154.
18.Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., ... & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid pads. International J. of Biological Macromolecules. 95, 962-973.
19.Doustdar, F., Olad, A., & Ghorbani, M. (2022). Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. International J. of Biological Macromolecules. 208, 912-924.
20.Kidane, S. W. (2021). Application of response surface methodology in food process modeling and optimization. In Response surface methodology in engineering science. IntechOpen.
21.Zangeneh, N., Azizian, A., Lye, L., & Popescu, R. (2002). Application of response surface methodology in numerical geotechnical analysis. In Proc. 55th Canadian Society for Geotechnical Conference, Hamilton. 8p.