1.Yang, S. Y., Lin, W. N., Huang, Y. L., Tien, H. W., Wang, J. Y., Ma, C. C. M., ... & Wang, Y. S. (2011). Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon. 49 (3), 793-803.
2.Galpayage Dona, D. G., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. (2012). Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene. 1 (2), 30-49.
3.Izee, S., Yousefi, H., Mashkour, M., & Rasouli, D. (2018). Comparative study on the properties of nanopapers prepared from cellulose and chitin nanofibers. J. of Wood and Forest Science and Technology. 25 (3), 61-72. [In Persian]
4.Parvaneh, V., Shariati, M., & Nezakati, A. (2015). "Statistical analysis of the parameters influencing the mechanical properties of layered MWCNTs/PVC nanocomposites. International J. of Nano Dimensions. pp. 509-516.
5.Nahidi Azar, F., & Karimi, S. (2016). Examining the achievements of nanocomposite in the construction industry. 3rd International Conference on Modern Research in CIVIL Engineering, Architectural and Urban Development, Berlin-Germany. 9 JULY 2016. [In Persian]
6.Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer. 132, 368-393.
7.Shrestha, S., Chowdhury, R. A., Toomey, M. D., Betancourt, D., Montes, F., & Youngblood, J. P. (2019). Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process
and its effect on properties of epoxy nanocomposites. Cellulose. 26 (18), 9631-9643.
8.Neves, R. M., Ornaghi Jr, H. L., Zattera, A. J., & Amico, S. C. (2021). Recent studies on modified cellulose/ nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers. pp. 255, 1173.
9.Izee, S., Yousefi, H., Mashkour, M., & Rasouli, D. (2020). Fabrication and properties evaluation of three-layered transparent nanocomposites reinforced with cellulose and chitin nanofibers. Iranian J. of Wood and Paper Industries. 10 (4), 495-505. [In Persian]
10.Mokhena, T. C., & John, M. J. (2019). Cellulose nanomaterials: new generation materials for solving global issues. Cellulose. pp. 1-46.
11.Chirayil, C. J., Mathew, L., & Thomas, S. (2014). Reviews of recent research in nano cellulose preparation from different lignocelluloseic fibers. Reviews on Advanced Materials Science. 37.
12.Huang, P., Wang, C., Huang, Y., & Wu, M. (2019). Structure and properties of cellulose nanofibrils. Nanocellulose: From Fundamentals to Advanced Materials. pp. 53-80.
13.de Amorim, J. D. P., de Souza, K. C., Duarte, C. R., da Silva Duarte, I., Ribeiro, F. D. A. S., Silva, G. S., ... & Sarubbo, L. A. (2020). Plant and bacterial nanocellulose: Production, properties, and applications in medicine, food, cosmetics, electronics, and engineering. A review. Environmental Chemistry Letters. 18 (3), 851-869.
14.Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., & Berglund, L. A. (2012). Cellulose nanofiber orientation in nano paper and nanocomposites by cold drawing. ACS Applied Materials and Interfaces. 4 (2), 1043-1049.
15.Parveen, S., Pichandi, S., Goswami, P., & Rana, S. (2020). Novel glass fiber reinforced hierarchical composites with improved interfacial, mechanical, and dynamic mechanical properties developed using cellulose microcrystals. Materials and Design. 188, 108448.
16.Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research J.
29 (10), 786-794.
17.Berari Kordabi, M., Yousefi, H., & Khazaeeian, A. (2017). Production of nanocellulose aerogel with freeze-dryer and its investigation and characteristics. Master thesis. Gorgan University of Agricultural Sciences and Natural Resources. 48p. [In Persian]
18.Bhagat, S., & Verma, P. K. (2013). Effect of filler parameter on the morphology of graphite filled epoxy composites. International J. of Scientific and Engineering Research, 4 (4), 459.
19.Yu, T., Soomro, S. A., Huang, F., Wei, W., Wang, B., Zhou, Z., & Hui, D. (2020). Naturally or artificially constructed nanocellulose architectures for epoxy composites: review. Nanotechnology Reviews. 9 (1), 1643-1659.
20.Hu, W., Chen, S., Yang, Z., Liu, L., & Wang, H. (2011). Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. The J. of physical chemistry B. 115 (26), 8453-8457.
21.Kumar, S., Falzon, B. G., Kun, J., Wilson, E., Graninger, G., & Hawkins, S. C. (2020). High-performance multiscale glass fiber epoxy composites integrated with cellulose nanocrystals for advanced structural applications. Composites Part A: Applied Science and Manufacturing. 131, 105801.