1.Izee, S., Yousefi, H., Mashkour, M., & Rasouli, D. (2018). Comparative study on the properties of nanopapers prepared from cellulose and chitin nanofibers. J. of Wood & Forest Science and Technology. 25 (3), 61-72. [In Persian]
2.Basta, A. H., & El-Saied, H. (2015). Nanotechnologies for production of high performance. In Thakur, V. K. and Thakur, M. K. (ED.), Eco-friendly polymer nanocomposites: processing and properties (Pp: 137-172) Advanced Structured Materials. Springer, India.
3.Jalali Torshizi, H., Chiani, E., & Mahdikhani, H. (2013). Emerging utilisations of nano cellulose: environmental protection. Pp: 1-8. In: The 3rd conference on new findings in the environment and agricultural ecosystems, Tehran, Iran.
4.Mngomezulu, M. E., & Jacob Johnes, M. (2017). Handbook of nanocellulose and cellulose nanocomposites (chapter 7), Kargarzadeh H., Ahmad I., Thomas S., and Dufresne A. (ED). Wiley‐VCH Verlag GmbH & Co. KGaA, Germany.
5.Azad, S., Yousefi, H., Mashkour, M., & Khazaeean, A.) 2015). Cellulose nanocomposites containing cellulosic nano strictures: types, properties, and applications. Pp (1-12). In: 1st National Conference on Wood and Lignocellulosic Products, Gonbad Kavoos, Iran.
6.Akbarnezhad, M., Rasouli, D., Yousefi, H., & Mashkour, M. (2020). Weathering performance of beech wood coated with acrylic paint containing UV stabilizers of dihydroxy benzophenone and nano zinc oxide. DRVNA INDUSTRIJA. 71 (4), 403-409.
7.Lavoine, N., & Bergström, L. (2017). Nanocellulose-based foams and aerogels: processing, properties, and applications. J. of Materials Chemistry A. 1 (3), 1-14.
8.Gupta, P., Verma, Ch., & Maji, P.K. (2019). Flame retardant and thermally insulating clay-based aerogelfacilitated by cellulose nanofibers. J. of Supercritical Fluids. 152, 1-12.
9.Fattahi, H., Haj, M., & Mousaei, O. Y. (2015). Polymeric aerogels: preparation, properties, and applications. Basparesh.
5 (1), 89-102. [In Persian]
10.Nine, M. J., Tran, D. N. H., Tung, T. T., Kabiri, S., & Losic, D. (2017). Graphene borate is an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Applied Materials & Interfaces. 9, 10160-10168.
11.Ghanadpour, M., Carosio, F., Larsson, P. T., & Wagberg, L. (2015). Phosphorylated cellulose nanofibrils: A renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules. 16, 3399-3410.
12.Ghanadpour, M., Wicklein, B., Carosio, F., & Wagnerg, L. (2018). All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale. 8, 4085-4095.
13.Wicklein, B., Kocjan, A., Alvarez, G.S., Carosio, F., Camino, G., Antonietti, M., & Bergstrom, L. (2014). Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature nanotechnology. 10, 277-283.
14.Bakirtzis, D., Delichatsios, M. A., Liodakis, S., & Ahmed, W. (2009). Fire retardancy impact of sodium bicarbonate on lignocellulosic materials. Thermochimica Acta. 486, 11-19.
15.Thanh, N. T. L. (2022). Investigation on the flame-retardant and physical properties of the modified cellulosic and polyurethane aerogel. Materials Today: Proceedings. 66, 2726-2729.
16.Dilamian, M., & Noroozi, B. (2019). Removal of oil and organic solvents from water using cellulosic aerogel prepared from rice straw. J. of Wood & Forest Science and Technology. 26 (2), 105-125. [In Persian]
17.ASTM D4761-19. (2019). Standard test methods for mechanical properties of lumber and wood-based structural materials. ASTM International. West Conshohocken, PA.
18.UL 94 HB. (2013). Standard for tests for flammability of plastic materials for parts in devices and appliances. UL Standard. Canada.
19.Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry. 57 (4), 603-619.
20.Liu, Y., Han, X., Kuerbanjiang, B., Lazarov, V. K., & Šiller, L. (2021). Effect of sodium bicarbonate solution on methyltrimethoxysilane-derived silica aerogels dried at ambient pressure. Frontiers of Chemical Science and Engineering. 15 (4), 954-959.
21.Farooq, M., Sipponen, M. H., Seppälä, A., & Österberg, M. (2018). Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate. ACS Applied Materials & Interfaces. 10, 27407-27415.
22.Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., & Valenza, A. (2016). A new eco-friendly chemical treatment of natural fibers: Effect of sodium bicarbonate on properties of sisal fiber and its epoxy composites. Composites Part B. 85, 150-160.
23.Granja, P. L., Pouyesgu, L., Petraud, M., DE JE´SO, B., Baquey, C., & Barbosa, M. A. (2001). Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J. of Applied Polymer Science. 82, 3341-3353.
24.Le, N. D., Trogen, M., Varley, R. J., Hummel, M., & Byrne, N. (2020). Effect of boric acid on the stabilization of cellulose-lignin filaments as precursors for carbon fibers. Cellulose. 28 (2), 729-739.
25.Kaya, M. (2017). Super absorbent, light, and highly flame-retardant cellulose-based aerogel cross-linked with citric acid. J. of Applied Polymer Science. 134, 45315-45324.
26.Xu, M., Bao, W., Xu, S., Wang, X., & Sun, R. (2016). Porous cellulose aerogels with high mechanical performance and their absorption behaviors. BioResources. 11 (1), 8-20.
27.Santos, J. C. D. O., Oliveira, L. Á. D., Gomes Vieira, L. M., Mano, V., Freire, R. T. S., & Panzera, T. H. (2019). Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fiber composites. Construction and Building Materials. 211, 427-436.
28.Bakri, B., Putra, A. E. E., Mochtar, A. A., Renreng, I., & Arsyad, H. (2018). Sodium bicarbonate treatment on mechanical and morphological properties of Coir fibers. International J. of Automotive and Mechanical Engineering. 5 (3), 5562-5572.
29.Carlo, A., Wu, T., Zimmermann, T., Kherbeche, A., Thoraval, M. J., Nyström, G., & Geiger, T. (2019). Ultra-porous nanocellulose foams: A facile and scalable fabrication approach. Nanomaterials. 9 (8), 1142.
30.Zhu, W., Zhang, Y., Wang, X., Wu, Y., Han, M., You, J., Jia, C., & Kim, J. (2022). Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study.
Cellulose. 29 (2), 817-833.