1.Chen, G., Qi, X., Guan, Y., Peng, F., Yao, Ch., & Cang-Sun, R. (2016). High-strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustainable Chemistry & Engineering. 4 (4), 1985-1993.
2.Cazón, P., Vázquez, M., & Velazquez, G. (2018). Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties, and transparency. Carbohydrate Polymers. 195, 432-443.
3.Lin, L., Abdel-Samie, M., & Cui, H. (2019). Novel packaging systems in foods. Encyclopedia of Food Security and Sustainability. 1, 484-491.
4.Ahmadzadeh, S., & Khaneghah, A. (2020). Role of green polymers in food packaging. Encyclopedia of Renewable and Sustainable Materials. 2, 305-319.
5.Gao, Q., Min, L., Zhao, K., Liu, X., Wang, S., & Li, H. (2020). Preparation of a microfibrillated cellulose/ Chitosan/ polypyrrole film for active food packaging. Progress in Organic Coatings. 149, 105907.
6.Bideau, B., Bras, J., Adoui, N., Loranger, E., & Daneault C. (2017). Polypyrrole /nano cellulose composite for food preservation: Barrier and antioxidant characterization. Food Packaging and Shelf Life. 12, 1-8.
7.Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., & Paoletti, M. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins, and inulin: a tribute to Henri Braconnot, the precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers. 87, 995-1012.
8.Rodriguez, M., Oses, J., Ziani, K., and Mate, J. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch-based edible films. Food Research International. 39, 840-846.
9.Tirtashi, F., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2019). Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging. International J. of Biological Macromolecules. 136, 920-926.
10.Nguyen, S., & Lee, B. (2021). Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment. Cellulose. 28, 5693-5705.
11.Abdul Halim, A., Kamari, A., & Phillip, E. (2018). Chitosan, gelatin, and methylcellulose films are incorporated with tannic acid for food packaging. International J. of Biological Macromolecules. 120, 1119-1126.
12.Atykyan, N., Revin, V., & Shutova, V. (2020). Raman and FT‑IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express. 10, 84.
13.Shakeri, A., Imani, M., & Miraki, F. (2015). Preparation and characterization of microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) from cotton stem. Iranian J. of Wood and Paper Science Research. 30 (2), 299-307. [In Persian]
14.Yu, T., Puxin, Zh., Mi, Zh., Yi, L., & Fei, C. (2020). Effect of microfibrillated cellulose loading on physical properties of starch/polyvinyl alcohol composite films. J. of Wuhan University of Technology-Mater. 35, 825-831.
15.Boa, Y., Zhang, H., Luon, Q., Zheng, M., Tang, H., & Huang F. (2018). Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydrate Polymers. 184, 66-73.
16.Ismail, M., Patanen, M., Sirvio, J., Visanko, M., Ohigashi, T., Kosugi, N., Huttula, M., & Liimatainen, H. (2019). Hybrid films of cellulose nanofibrils, chitosan, and nano-silica structural, thermal, optical, and mechanical properties. Carbohydrate Polymers.218, 87-94.
17.Kumar, V., Bollstrom, R., Yang, A., Chen, Q., Chen, G., Salminen, P., Bousfield, D., & Toivakka, M. (2014). Comparison of nano- and microfibrillated cellulose films. Cellulose. 21, 3443-3456.
18.Souza, A., Benze, R., Ferrao, E., Ditchfield, C., Coelho, A., & Tadini, C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology. 46, 110-117.
19.Rodriguez, M., Oses, J., Ziani, K., & Mate, J. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch-based edible films. Food Research International. 39, 840-846.