1.Waez-Mousavi, S. M., & Habashi, H. (2014). Humus forms and the most important factors affecting its changes in mixed beech forest (case study: Shastkalateh forest of Gorgan). J. of Wood & Forest Science and Technology. 20 (4), 151-166. [In Persian]
2.Zanella, A., Ponge, J. F., Jabiol, B., Sartori, G., Kolb, E., Le Bayon, R. C., Gobat, J. M., Aubert, M., De Waal, R., Van Delft, B., & Vacca, A. (2018). Humusica 1, article 5: terrestrial humus systems and forms-keys of classification of humus systems and forms. Applied Soil Ecology J. 122 (1), 75-86.
3.Bayranvand, M., Akbarinia, M., Salehi Jouzani, G. H., Gharechahi, J., & Kooch, Y. (2019). The variability of humus forms in relation to forest cover and soil ecology in different altitudes. Iranian J. of Forest. 11 (3), 335-346. [In Persian]
4.
Bayranvand, M.,
Akbarinia, M.,
Salehi Jouzani, G. H.,
Gharechahi, J., &
Kooch, Y. (2021). Humus index assessment in relation to forest cover variables and altitude gradient.
J. Ecology of Iranian Forests. 9 (18), 169-178. [In Persian]
5.Sadeghi, M., Habashi, H., Esmailzadeh, O., Mohammadi, J., & Sajedi, T. (2020). Model Humus forms changes in the beech and hornbeam stands in the old-growth and managed forest (case study: Shastkalateh forest of Gorgan). J. of Forest Research and Development. 6 (3), 429-444. [In Persian]
6.Descheemaeker, K., Muys, B., Nyssen, J., Sauwens, W., Haile, M., Poesen, J., Raes, D., & Deckers, J. (2009). Humus forms development during forest restoration in enclosures of the Tigray highlands, Northern Ethiopia. Restoration Ecology J. 17 (2), 280-289.
7.Labaz, B., Galka, B., Bogacz, A., Waroszewski, J., & Kabala, C. (2014). Factors influencing humus forms and forest litter properties in the mid-mountains under the temperate climate of Southwestern Poland. Geoderma J. 230 (231), 265-273.
8.Bonifacio, E., Falsone, G., & Petrillo, M. (2011). Humus forms, organic matter stocks, and carbon fractions in forest soils of northwestern Italy. Biology and Fertility of Soils J. 47 (5), 555-566.
9.Ascher, J., Sartori, G., Graefe, U., Thornton, B., Ceccherini, M. T., Pietramellara, G., & Egli, M. (2012). Are humus forms, mesofauna, and microflora in subalpine forest soils sensitive to thermal conditions? Biology and Fertility of Soils J. 48 (6), 709-725.
10.Hellwig, N., Anschlag, K., & Broll, G. (2016). A fuzzy logic-based method for modeling the spatial distribution of indicators of decomposition in a high mountain environment. Arctic, Antarctic, and Alpine Research J. 48 (4), 623-635.
11.Ma, H. P., Yang, X. L., Guo, Q. Q., Zhang, X. J., & Zhou, C. N. (2016). Soil organic carbon pools along different altitudinal levels in the Sygera mountains, Tibetan plateau. J. of Mountain Science. 13 (3), 476-483.
12.Mackey, B. G. (1996). The role of GIS and environmental modeling in the conservation of biodiversity. In Proceedings of the Third International Conference Integrating GIS and Environmental Modeling, Santa Fe, NM, Pp: 21-25.
13.Hellwig, N., Tatti, D., Sartori, G., Anschlag, K., Graefe, U., Egli, M., Gobat, J. M., & Broll, G. (2018). Modeling spatial patterns of humus forms in montane and subalpine forests: implications of local variability for upscaling. Sustainability J. 11 (48), 1-15.
14.Ponge, J. F. Jabiol, B., & Gégout, J. C. (2011). Geology and climate conditions affect more humus forms than forest canopies on a large scale in temperate forests. Geoderma J. 162 (1-2), 187-195.
15.Habashi, H., & Rafiee, F. (2019). Variables influencing humus form differentiation in the Hyrcanian forest
on the local scale (case study: Shast-Kalateh Gorgan). J. of Forest Research and Development. 5 (3), 343-356. [In Persian]
16.
Abbaszadeh Afshar, F.,
Jalalian, A., &
Ayoubi, Sh. (2010). Spatial prediction of some physicochemical soil properties and magnetic susceptibility using digital topographic model.
J. Water and Soil Conservation. 17 (2), 89-105. [In Persian]
17.Baboli, H., & Negahban, S. (2020). Investigation of fermi characteristics of land surface based on morphometric indices and using GIS (case study: Fahlian watershed). J. of Geography. 19 (68), 102-117. [In Persian]
18.Bayranvand, M., Kooch, Y., Hosseini, S. M., & Alberti, G. (2017). Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran. Forest Ecology and Management J. 385 (1), 78-86.
19.Badía-Villas, D., & Girona-García, A. (2018). Soil humus changes with elevation in Scots pine stands of the Moncayo Massif (NE Spain). Applied Soil Ecology J. 123, 617-621.
20.Bayranvand, M., Akbarinia, M., Salehi Jouzani, G., Gharechahi, J., & Alberti, G. (2021). Dynamics of humus forms and soil characteristics along a forest altitudinal gradient in Hyrcanian forest. iForest-Biogeosciences and Forestry J. 14 (1), 26-33.
21.Zanella, A., Ponge, J.F., Jabiol, B., Sartori, G., Kolb, E., Gobat, J.M., Le Bayon, R.C., Aubert, M., De Waal, R., Van Delft, B., & Vacca, A. (2018). Humusica 1, article 4: terrestrial humus systems and forms-specific terms and diagnostic horizons. Applied Soil Ecology J. 122, 56-74.
22.De Nicola, C., Zanella, A., Testi, A., Fanelli, G., & Pignatti, S. (2014). Humus forms in a Mediterranean area (Castelporziano reserve, Rome, Italy): classification, functioning, and organic carbon storage. Geoderma J. 235 (236), 90-99.
23.Wilson, J.P., & Gallant, J.C. (2000). Digital terrain analysis. Terrain analysis: principles and applications. John Wiley & Sons, INC. Edition New York. Pp: 1-27.
24.Sepahavnd, M., Khormali, F., Kiani, F., & Eftekhari, K. (2017). Modeling soil depth and topographic attributes relationship for predicting soil depth in Rimeleh catchment, Lorestan province. J. of Iranian soil Research. 321 (4), 601-611. [In Persian]
25.Karamian, M., & Hosseini, V. (2014). Effect of altitude, slope, and canopy on absorbable phosphorus, carbon, and total nitrogen in forest soils (case study: The forest of Ilam province, Dalab). J. of Forest Sustainable Development. 1 (1), 57-71. [In Persian]
26.Raoof, M., Sadraddini, S.A.A., Nazemi, A.H., & Maroofi, S. (2011). Effect of land slope on infiltration and some physical properties of soil. J. of Water and Soil Science. 21 (1), 57-68. [In Persian]
27.Jokar-Sarhangi, I., Esmaeali, R., & Baba-Alipour, S. (2018). Survey of relationship between geology and topography factors with drainage density in Behrestagh watershed. J. of Hydrogeomorphology. 14, 135-156. [In Persian]
28.Maleki, S., Khormali, F., Kiani, F., & Karimi, A.R. (2013). Effect of slope position and aspect on some physical and chemical soil characteristics in a loess hillslope of Toshan area, Golestan province, Iran. J. of Water and Soil Conservation. 20 (3), 93-112. [In Persian]
30.Klinka, K., Green, R.N., Trowbridge, R.L., & Lowe, L.E. (1981). Taxonomic classification of humus forms in ecosystems of British Columbia. Ministry of Forests, Land Management Report, ISSN: 0702-9861, Pp: 4-5.
31.Yavitt, J.B., Pipes, G.T., Olmos, E.C., Zhang, J., & Shapleigh, J.P. (2021). Soil organic matter, soil structure, and bacterial community structure in a post-agricultural landscape. Frontiers in Earth Science J. 9, 1-15.
32.Beven, K., & Kirkby, M. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Science Bulletin J.24 (1), 43-69.
33.Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences J. 10 (1), 101-112.
34.Moore, I.D., Gessler, P.E., Nielsen, G.A., & Petersen, G.A. (1993). Terrain attributes: estimation methods and scale effects. In: Jakeman, A.J., Beck, M.B., and McAleer, M. Modelling change in environmental systems. London: Wiley. Pp: 189-214.
35.Jabiol, B., Zanella, A., Ponge, F., Sartori, G., Englisch, M., Van Delft, B., De Waal, R., & Claire Le Bayon, R. (2013). A proposal for including humus forms in the world reference base for soil resources (WRB-FAO). Geoderma J. 192, 286.294.