1.Egli, S., and Höpke, M. 2020. CNN-based tree species classification using high resolution RGB image data from automated UAV observations. Remote Sensing. 12: 3892. 1-17.
2.Guo, X., Liu, Q., Sharma, R.P., Chen, Q., Ye, Q., Tang, S., and Fu, L. 2021. Tree recognition on the plantation using UAV images with ultrahigh spatial resolution in a complex environment. Remote Sensing. 13: 4122. 1-23.
3.Yang, K., Zhang, H., Wang, F., and Lai, R. 2022. Extraction of broad-leaved tree crown based on UAV visible images and OBIA-RF model: A case study for Chinese olive trees. Remote Sensing. 14: 2469. 1-23.
4.Marzolff, I., Kirchhoff, M., Stephan, R., Seeger, M., Aït Hssaine, A., and Ries, J.B. 2022. Monitoring dryland trees with remote sensing. Part A: Beyond CORONA-Historical HEXAGON satellite imagery as a new data source for mapping open-canopy woodlands on the tree level. Frontiers in Environmental Sciences. 10: 896702. 1-21.
5.Onishi, M., and Ise, T. 2021. Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports. 11: 903. 1-15.
6.Onishi, M., Watanabe, S., Nakashima, T., and Ise, T. 2022. Practicality and robustness of tree species identification using UAV RGB image and deep learning in temperate forest in Japan. Remote Sensing. 14: 1710. 1-22.
7.Erfanifard, Y., Kraszewski, B., and Stereńczak, K. 2021. Integration of remote sensing in spatial ecology: assessing the interspecific interactions
of two plant species in a semi-arid woodland using unmanned aerial vehicle (UAV) photogrammetric data. Oecologia. 196: 115-130.
8.Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F.E., and Schmidtlein, S. 2020. Convolutional neural networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote Sensing in Ecology and Conservation. 6: 472-486.
9.Kattenborn, T., Eichel, J., and Fassnacht, F.E. 2019. Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports. 9: 17656. 1-9.
10.Gonroudobou, O.B.H., Silvestre, L.H., Diez, Y., Nguyen, H.T., and Caceres, M.L.L. 2022. Treetop detection in mountainous forests using UAV terrain awareness function. Computation. 10: 90. 1-14.
11.Al-Najjar, H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A., Ueda, N., and Mansor, S. 2019. Land cover classification from fused DSM and UAV images using Convolutional Neural Networks. Remote Sensing. 11: 1461. 1-18.
12.Wu, S., Deng, L., Guo, L., and Wu. Y. 2022. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods. 18: 68. 1-16.
13.Garzon-Lopez, C.X., and Lasso, E. 2020. Species classification in a tropical alpine ecosystem using UAV-borne RGB and hyperspectral imagery. Drones. 4: 69. 1-18.
14.Yang, M., Mou, Y., Liu, S., Meng, Y., Liu, Z., Li, P., Xiang, W., Zhou, X., and Peng, C. 2022. Detecting and mapping tree crowns based on convolutional neural network and Google Earth images. International J. of Applied Earth Observation and Geoinformation. 108: 102764. 1-10.
15.Liu, Y., Zheng, X., Ai, G., Zhang, Y., and Zuo, Y. 2018. Generating a high-precision true digital orthophoto map based on UAV images. ISPRS International J. of Geo-Information. 7: 333. 1-15.
16.Aeberli, A., Johansen, K., Robson, A., Lamb, D.W., and Phinn, S. 2021. Detection of banana plants using multi-temporal multispectral UAV imagery. Remote Sensing. 13: 2123. 1-24.
17.Hendria, W.F., Phan, Q.T., Adzaka, F., and Jeong, C. 2022. Combining transformer and CNN for object detection in UAV imagery. ICT Express. https:// doi.org/10.1016/j.icte.2021.12.006.
18.Li, W., Fu, H., Yu, L., and Cracknell, A. 2017. Deep learning based oil palm tree detection and counting for high-resolution remote sensing Images. Remote Sensing. 9: 22. 1-13.
19.Osco, L., Junior, J., Ramos, A., Jorge, L., Fatholahi, S., Silva, J., Matsubara, E., Pistori, H., Gonçalves, W., and Li, J. 2021. A review on deep learning in UAV remote sensing. International J. of Applied Earth Observation and Geoinformation. 102: 102456. 1-38.
20.Congalton, R., and Green, K. 2019. Assesssing the accuracy of remotely sensed data (3rd Ed). CRC Press. USA. 348p.
21.Erfanifard, Y. 2014. Application of ROC curve to assess pixel-based classification methods on UltraCam-D aerial imagery to discriminate tree crowns in pure stands of Brant`s oak in Zagros forests. Iranian J. Forest and Poplar Research. 22: 4. 649-663. (In Persian)
22.Wiegand, T., and Moloney, K.A. 2014. Handbook of spatial point-pattern analysis in ecology. CRC Press. England. 510p.
23.Pourahmad, M., Oladi, J., and Fallah, A. 2018. Detection of tree species in mixed broad-leaved stands of Caspian forests using UAV images (Case study: Darabkola Forest). Ecology of Iranian Forest. 6: 11. 61-75. (In Persian)
24.Barazmand, S., Soosani, J., Naghavi, H., and Sadeghian, S. 2019. Discriminating between Brant`s oak (Quercus brantii Lindl.) and gall oak (Q. infectoria Oliv.) species using the UAV images. Iranian J. of Forest and Poplar Research. 27: 3. 245-257. (In Persian)
25.Miraki, M., Sohrabi, H., Fatehi, P., and Kneubuehler, M. 2020. Comparison of machine learning algorithms for broad leaf species classification using UAV-RGB images. J. of Geomatics Science and Technology. 10: 2. 1-10. (In Persian)