1.Bal, B.C. 2016. Some technological properties of laminated veneer lumber produced by fast-growing poplar and eucalyptus. Maderas-Cience Technology. 18: 3. 413-424.
2.Bao, M., Huang, X., Jiang, M., Yu,W., and Yu, Y. 2017. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). J. of Wood Science. 63: 591-605.
3.Bektas, I., Guler, C., Kalaycioglu, H., Mengeloglu, F., and Nakar, M. 2005. The manufacture of particle boards using sunflowers stalks (Helianthus annuus L.) and poplar wood (Populus Alba L.). J. of Composite Materials. 39: 5. 467-473.
4.Bodig, J., and Jayne, B.A. 1982. Mechanics of wood and wood Composites. Van Nostrand Reinhold Co. New York. 712p.
5.Boonstra, M.J., and Blomberg, J. 2007. Semi-isostatic densification of heat-treated radiata pine. J. of Wood Science Technology. 41: 607-617.
6.Cavus, V. 2020. Selected properties of Mahogany wood flour filled polypropylene composite: the effect of maleic anhydride-graft polypropylene (MAPP). Bioresources 15: 2. 2227-2236.
7.Cossalter, C., and Smith, C. 2003. Fast-wood forestry Myths and Realities. Center for International Forestry Research. Bogor, Indonesia. 50p.
8.Dastoorian, F., Farhadi, F., Hosseinzadeh, F., and Zabihzade, S.M. 2019. Effect of thermal treatment on physical and chemical structure of Fagus Orientals and Acer velutinum. Iran J. of Wood and Paper Researches. 33: 1. 142-154.
(In Persian)
9.Demirbas, A. 1998. Aqueous glycerol delignification of wood chips and ground wood. J. of Bioresource Technology.
63: 2. 179-185.
10.Dogu, D., Bakir, D., Tuncer, F.D., Hizal, K.T., Unsal, O., and Kandan, Z. 2016. Microscopic investigation of defects in thermally compressed poplar wood panels. J. of Maderas-Cience Technology. 18: 2. 337-348.
11.Emami, S., Tabil, L.G., and Adapa, P. 2015. Effect of Glycerol on densification of agricultural biomass. International J. of Agricultural and Biological Engineering. 8: 1. 64-73.
12.Esteves, B., Velez Marques, A., Domingos, I., and Pereira, H. 2006. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. J. of Wood Science and Technology.41: 193-207.
13.Frey, M., Widner, D., Segmehl, J., Casdorff, K., Keplinger, T., and Burgert, I. 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. J. of Applied Materials and Interfaces. 10: 5. 5030-5037.
14.Frey, M., Schneider, L., Zirkelbach, M., Dransfeld, C., Masania, K., Keplinger, T., and Burgert, I. 2019. Densified cellulose materials and delignified wood reinforced composites. - International. Conference on Composite Materials (ICCM), Melbourne, Australia. 156p.
15.Fu, Q., Cloutier, A., and Laghdir, A. 2016. Optimization of the thermo-hygro mechanical (THM) process for sugar maple wood densification. BioResources. 11: 4. 8844-8859.
16.Guo, J., Song, K., Salmen, L., and Yin, Y. 2015. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers. 115: 207-214.
17.Hajihassani, R., Mohebby, B., Kazemi Najafi, S., and Navi, P. 2018. Ifluence of combined hygrothermomechanical treatment on technical characteristics of poplar wood. Maderas Ciencia y Technologia. 20: 1. 117-128.
18.Hung, R., Lee, S., and Bennett, J.W. 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. J. of Fungal Ecology. 6: 19-26.
19.Ito, Y., Tanahashi, M., Shigematsu, M., Shinoda, Y., and Ohta, C. 1998. Compressive-molding of wood by
high-pressure steam-treatment: Part 1. Development of compressively molded squares from thinnings. Holzforschung-International J. of the Biology. Chemistry. Physics and Technology of Wood. 52: 2. 211-216.
20.Karadeniz, N., Tiril, A., and Baylan,E. 2009. Wetland management in Turkey: Problems, achievements and perspectives. African J. of Agricultural Research. 4: 11. 1106-1119.
21.Kazi, S.N. 2018. Pulp and paper processing. Intech Open: London, United Kingdom. 33p.
22.Keplinger, T., Frey, M., and Burgert, I. 2018. Versatile strategies for the development of wood-based functional materials. In Bio inspiration. J. of Biomimetic and Bio replication VIII. 10593: 10593-13.
23.Kutnar, A., Kamke, F.A., and Sernek. M. 2008. Density profile and morphology of viscoelastic thermal compressed wood. J. of Wood Science and Technology. 43: 57-68.
24.Laine, K., Belt, T., Rautkari, L., Ramsay, J., Hill, C.A.S., and Hughes, M. 2013. Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. J. of Material Science.48: 8530-8538.
25.Laine, K., Segerholm, K., Walinder, M., Rautkari, L., and Hughes, M. 2016. Wood densification and thermal modification: hardness, set-recovery and micromorphology. J. of Wood Science Technology. 50: 5. 883-894.
26.Mohammadi, A., Tabarsa, T., and Tasoji, M. 2011. Effect of static compressive of treated Paulownia wood on relationship between mechanical properties and density. Iran J. of Wood and Paper Researches. 26: 2. 592-604. (In Persian)
27.Morsing, N., and Hoffmeyer, P. 1998. Densification of wood: the influence of hygrothermal treatment on compression of beech perpendicular to gain. Kgs. Lyngby, Denmark: Technical University of Denmark. BYG-Rapport; No. R-79, 146p.
28.Navi, P., and Heger, F. 2004. Combined densification and thermo-hydro-mechanical processing of wood. Materials Research Society Bulletin.29: 5. 332-336.
29.Novo, L.P., Gurgel, L.V.A., Marabrzi, K., and Curvelo, A.A.S. 2011. Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource Technology. 102: 10040-10046.
30.Romani, A., Ruiz, H.A., Pereira,F.P., Domingues. L., and Teixeira, J.A. 2013. Fractionation of Eucalyptus globulus Wood by Glycerol−Water Pretreatment: Optimization and Modeling. J. of American chemical society. 52: 14342-14352.
31.Roussel, C., Marchetti, V., Lemor, A., Wozniak, E., Loubinoux, B., and Gerardin, P. 2001. Chemical modification of wood by polyglycerol-maleic anhydride treatment. Holzforschung. 55: 57-62.
32.Rowell, R. 1984. The chemistry of solid wood. American Chemical Society, Washington, DC, 290p.
33.Sandberg, D., Haller, P., and Navi, P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. J. of Wood Material Science and Engineering.8: 1. 64-88.
34.Shams, M.I., and Yano, H. 2011. Compressive deformation of phenol formaldehyde (PF) resin-impregnated wood related to the molecular weight of resin. J. of Wood Science Technology. 45: 73-81.
35.Song, J., Chen, C., Zhu, S., Zhu, M., Dai, J., Ray, U., and Yao, Y. 2018. Processing bulk natural wood into a high-performance structural material. Nature. 554: 224-228.
36.Standard, T.A.P.P.I .1999. Method T222 om. TAPPI test methods. 5p.
37.Sun, F., and Chen, H. 2008. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. J. of Bio Resource Technology. 99: 6156-6161.
38.Tu, D., Su, X., Zhang, T., Fan, W., and Zhou, Q. 2014. Thermo mechanical densification of populus tomentosa var. tomentosa with low moisture content. BioResources. 9: 3. 3846-3856.
39.Unsal, O., Kartal, S.N., Candan, Z., Arango, R.A., Clausen, C.A., and Green, F. 2009. Decay and termite resistance, water absorption and swelling of thermally compressed wood panels. International Biodeterioration and Biodegradation. 63: 548-552.
40.Welzbacher, C.R., Wehsener, J., Rapp, A.O., and Haller, P. 2008. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale-Dimensional stability and durability aspects. Holz Roh Werkst. 66: 39-49.