1.Abargues, R., Rodriguez-Canto, P.J., Albert, S., Suarez, I., and Martínez-Pastor, J.P. 2014. Plasmonic optical sensors printed from Ag–PVA nanoinks. Materials Chemistry C. J. 2: 5. 908-915.
2.Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M., and Shaler, S.M. 2020. Birefringence-based orientation mapping of cellulose nanofibrils in thin films. Cellulose J. 27: 2. 677-692.
3.Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis, J.A. 2016. Biomimetic 4D printing. Nature Materials J. 15: 4. 413-418.
4.Gray, D.G., and Mu, X. 2015. Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials J.8: 11. 7873-7888.
5.Habibi, Y., Heim, T., and Douillard, R. 2008. AC electric fieldāassisted assembly and alignment of cellulose nanocrystals. Polymer Science Part B: Polymer Physics J. 46: 14. 1430-1436.
6.Habibi, Y., Lucia, L.A., and Rojas, O.J. 2010. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews J. 110: 6. 3479-3500.
7.Kim, J., Chen, Y., Kang, K.S., Park,Y.B., and Schwartz, M. 2008. Magnetic field effect for cellulose nanofiber alignment. American Institute of Physics J. Pp: 96-104.
8.Kimura, F., and Kimura, T.2008. Magnetic alignment and patterning of cellulose fibers. Science and Technology of Advanced Materials J.9: 2. 12242-12244.
9.Krzywinski, M. 2018. Image Color Summarizer: RBG, HSV, LCH & Lab image color statistics and clustering-simple and easy. accessed May 2019 <http://mkweb.bcgsc.ca/ color-summarizer/ ?>
10.Kvien, I., and Oksman, K. 2007. Orientation of cellulose nanowhiskers in polyvinyl alcohol. Applied Physics A.
J. 87: 4. 641-643.
11.Li, D., Liu, Z., Al-Haik, M., Tehrani, M., Murray, F., Tannenbaum, R., and Garmestani, H. 2010. Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polymer Bulletin J. 65: 6. 635-642.
12.Mashkour, M., Kimura, T., Kimura, F., Mashkour, M., and Tajvidi, M. 2014. One-dimensional core–shell cellulose-akaganeite hybrid nanocrystals: synthesis, characterization, and magnetic field induced self-assembly. RSC Advances J. 4: 94. 52542-52549.
13.Mashkour, M., Kimura, T., Kimura, F., Mashkour, M., and Tajvidi, M.2014. Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque. Biomacromolecules J. 15: 1. 60-65.
14.Mashkour, M., Kimura, T., Mashkour, M., Kimura, F., and Tajvidi, M.2018. Printing birefringent figures by surface tension-directed self-assembly of a cellulose nanocrystal/polymer ink components. ACS Applied Materials & Interfaces J. 11: 1. 1538-1545.
15.Mashkour, M., Tajvidi, M., Kimura, F., Yousefi, H., and Kimura, T. 2014. Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid. ACS Applied Materials & Interfaces J.6: 11. 8165-8172.
16.Mashkour, M., Tajvidi, M., Kimura, T., Kimura, F., and Ebrahimi, G. 2011. Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticle covered natural cellulose fibers. Bioresources J. 6: 4. 4731-4738.
17.Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews J. 40: 7. 3941-3994.
18.Mu, X., and Gray, D.G. 2014. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir J. 30: 31. 9256-9260.
19.Pullawan, T. and Wilkinson, A.N., and Eichhorn, S.J. 2012. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules J. 13: 8. 2528-2536.
20.Revol, J.F., Godbout, L., Dong, X.M., Gray, D.G., Chanzy, H., and Maret, G. 1994. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liquid Crystals J. 16: 1. 127-134.
21.Shin, H.J., Lim, M.C., Park, K., Kim, S.H., Choi, S.W., and Ok, G. 2017. Invisible security printing on photoresist polymer readable by terahertz spectroscopy. Sensors J. 17: 12. 2825.
22.Ul-Islam, M., Khan, S., Khattak, W.A., Ullah, M.W., and Park, J.K., 2015. Synthesis, chemistry, and medical application of bacterial cellulose nanocomposites. In Eco-friendly Polymer Nanocomposites J. Springer, New Delhi. Pp: 399-437.
23.Ye, S., Fu, Q., and Ge, J. 2014. Invisible photonic prints shown by deformation. Advanced Functional Materials J.
24: 41. 6430-6438.
24.Yousefi, H., Mashkour, M., and Yousefi, R. 2015. Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite. Cellulose J. 22: 2. 1189-1200.
25.Zhou, L., He, H., Li, M.C., Song, K., Cheng, H.N., and Wu, Q. 2016. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydrate Polymers J. 153: 445-454.