1.Castro, C., Zuluaga, R., Álvarez,C., Putaux, J.L., Caro, G., Rojas,O.J., Mondragon, I., and Ga˜nán, P.2012. Bacterial cellulose produced bya new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers. 8: 4. 1033-1037.
2.Cheng, Z., Yang, R., and Liu, X. 2016. Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as
low-cost carbon source. Bioresources.
3.Cho, E.J., Oh, J.Y., Chang, H.Y.,and Yun, J.W. 2006. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J. of Biotechnology. 127: 129-140.
4.Dufresne, A. 2013. Nanocellulose: anew ageless bionanomaterial. Materials Today. 16: 6. 220-227.
5.Esa, F., Masrinda Tasirin, S., and Abd Rahman, N. 2014. Overview of bacterial cellulose production and application. J.
of Agriculture and Agricultural Science Procedia. 2: 113-119.
6.Esa, F., Rahman, N.A., Kalil, M.S., and Tasirin, S.M. 2017. Effects of agitation conditions on bacterial cellulose production by Acetobacter xylinum 0416 in fermentation of matured coconutwater medium. Malaysian J. of Analytical Sciences. 21: 1.
8.Jahan Latibari, A., Khosravani, A. and Rahmaninia, M. 2007. Paper recycling technology. Tehran: Arvij press, 544p.
(In Persian)
9.Kang, X., Wang, Y., Harvey, L.M.,and Mcneil, B. 2000. Effect of air flow rate on flow scleroglucan synthesis
by sclerotiumglucanicum in an airlift bioreactor with an internal loop. J. of Bioprocess and Biosystems Engineering. 23: 69-74.
10.Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., and Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50: 24. 5438-5466.
11.Krystynowicz, A., Czaja, W.,Jezierska, A.W., Mis´kiewicz, M.G., Turkiewicz, M., and Bielecki, S.2002. Factors affecting the yieldand properties of bacterial cellulose.J. of Industrial Microbiology and Biotechnology. 29: 4. 189-195.
12.Krystynowicz, A., Maria, K.,Aginiezka, W.K., Stanislaw, B.,Emilia, K., Aleksander, M., and Andrzej, P. 2005. Molecular basis
of biosynthesis disappearance in submerged culture of Acetobacter xylinum. J. of Industrial Microbiology and Biotechnology. 52: 3. 691-698.
13.Kurtoglu Uzyol, H., and TurkerSacan, M. 2017. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environmental Science and Pollution Research. 24: 12. 11154-11162.
14.Mirshokraei, S.A. 2003. Pulp andpaper technology. Aiij Press, 501p. (Translated in Persian)
15.Mirshokraei, S.A. 2002. Wood chemistry: fundamentals and applications. Aiij Press. 198p. (Translated in Persian)
16.Moosavi-Nasab, M., and Yousefi, A. 2012. Investigation of physicochemical properties of the bacterial cellulose produced by Gluconacetobacter xylinus from date syrup. International J.
of Nutrition and Food Engineering.4: 8. 613-618.
17.Morales-Narváez, E., Golmohammadi, H., Naghdi, T., Yousefi, H., Kostiv, U., Horak, D., Pourreza, N., and Merkoci, A. 2015. Nanopaper as an optical sensing platform. ACS Nano. 9: 7. 7296-7305.
18.Pecoraro, E., Manzani, D., Messaddeq, Y., and Ribeiro, S.J.L. 2008. Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. Monomers, Polymers and Composites from Renewable Resources. Chapter. 17: 3
19.Poletto, M.P., Zattera, A.J., and Santana, R.M.C. 2012. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy and thermogravimetric analysis. J. of Applied Polymer Science. 126: 1. 336-343.
20.Rangaswamy, B.E., Vanitha, K.P.,and Hungund, B.S. 2015. Microbial cellulose production from bacteria isolated from rotten fruit. InternationalJ. of Polymer Science. 2015: 1-8.
21.Rezayati Charani, P., and Dehghani-Firouzabadi, M. 2016. Comparison of produced film of cellulose nano-fibers by dried and vacuum filtrated method from unbleached kraft pulp of kenafbast fiber. Iranian J. of Forest and Wood Products. 68: 2. 317-328. (In Persian)
22.Torres, F.G., Commeaux, S., and Troncoso, O.M. 2012. Biocompatibility of bacterial cellulose based biomaterials. Functional Biomaterials. 3: 4. 864-878.
23.Ullah, H., Santos, H.A., and Khan, T. 2016. Applications of bacterial cellulose in food, cosmetics and drug delivery.J. of Cellulose. 23: 4. 2291-2314.
24.Yousefi, H., Faezipour, M., Nishino, T., Ebrahimi, G., and Shakeri, A. 2011. All-cellulosecomposite and nanocomposite made from partially dissolved micro and nanofibers of canola straw. Polymer J.43: 559-564.