1.Agbelade, A.D., Onyekwelu, J.C., and Oyun, M.B. 2017. Tree species richness, diversity, and vegetation index for federal capital territory, abuja, nigeria. Inter. J. Forest. Res. 1: 1-12.
2.Akbari, H., and Kalbi, S. 2016. Determining pleiades satellite data capability for tree diversity modeling. Biogeosciences and Forestry 10: 1. 1-5.
3.Ardekani, M.R. 2004. Ecology. Tehran University Press. 340p. (In Persian)
4.Bawa, K., Rose, J., Ganeshaiah, K.N., Barve, N., Kiran, M.C., and Umashaanker, R. 2002. Assessing biodiversity from space: an example from the Western Ghats India. Conservation Ecology. 6: 2. 1-7.
5.Breiman, L. 2001. Random forests. Mach. Learn. 45: 5-32.
6.Dye, M., Mutanga, O., and Ismail, R. 2012. Combining spectral and textural remote sensing variables using random forests: Predicting the age of pinus patula forests in Kwazulu-Natal, South Africa. J. Spat. Sci. 57: 193-211.
7.Gillepsi, T.W., Saatchi, S., Pau, U., Bohlman, S., Giorgi, A.P., and Lewis, S. 2008. Towards quantifying tropical tree species richness in tropical forests. Inter. J. Rem. Sens. 30: 6. 1629-1634.
8.Gillespie, T.W., Moody, G.M., Rocchini, D., Giorgi, A.P., and Saatchi, S.2008. Progress in Physical Geography, 32: 2. 203-
9.Gillespie, T.W., Saatchi, S., Pau, U., Bohlman, S., Giorgi, A.P., and Lewis, S. 2009. Towards quantifying tropical tree species richness in tropical forests, Inter. J. Rem. Sens. 30: 6. 1629-1634.
10.Hosseini, S.M. 2000. Determination of ecological capability of native habitats of Iran. Doctoral dissertation, Tarbiat Modarres University. 160p. (In Persian)
11.Immitzer, M., Atzberger, C., and Koukal, T. 2012. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sens. 4: 2661-2693.
12.Lopes, M., Fauvel, M., Ouin, A., and Girard, S. 2017. Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices. MultiTemp 2017 - 9th In-ternational workshop on the analysis of multitemporal remote sensing images, Jun 2017, Bruges, Belgium. Pp: 1-4.
13.McRoberts, R.E., and Tomppo, E.O. 2007. Remote sensing support for national forest inventories. Remote Sens. Environ.
14.Meng, J., Li, S., Wang, W., Liu, Q., Xie, S., and Ma, W. 2016. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images. Remote Sens. 8: 125. 1-24.
15.Mohammadi, J., and Shataee, S. 2007. Forest stand density mapping using Landsat-ETM+ data, Loveh’s forest, north of Iran. In: Proceedings of the “28th Asian Conferences of Remote Sensing”. Malaysia, 12-16 Nov 2007, pp. 10-27. Naeemi B. 1378. Evaluation and preparation of map of diversity and richness of plant species of Golestan National Park using TM data, Master's thesis, Tarbiat Modarres University, 95p. (In Persian)
16.Nagendra, H., Rocchini, D., Ghate, R., Sharma, B., and Pareeth, S. 2010. Assessing plant diversity in a dry tropical forest: Comparing the utility of Landsat and Ikonos satellite images. Rem. Sens. 2: 478-496.
17.Peng, Y., Fan, M., Song, J., Cui, T., and Li, R. 2018. Assessment of plant species diversity based on hyper spectral indices at a fine scale. Scientific Reports, 8: 47-76.
18.Pourbabaei, H. 1998. Biological diversity of wood species in the forests of Guilan province. PhD thesis, Tarbiat Modarres University. 367p. (In Persian)
19.Rocchini, D., Ricotta, C., and Chiarucci, A. 2007. Using satellite imagery to assess plant species richness: The role
of multispectral systems. Applied Vegetation Science, 10: 3. 325-331.
20.Saarinen, N., Vastaranta, M., Näsi R., Rosnell, T., Hakala T., Honkavaara, E., Wulder, M.A., Luoma, V., Tommaselli A.M.G., Imai, N.N., Ribeiro, E.A.W., Guimarães, R.B., Holopainen M., and Hyyppä, J. 2018. Assessing biodiversity in Boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 10: 338. 1-24.
21.Safari, A., Shaabanian, N., Erfanifard, S.Y., Hassan Heidari, R., and Pourreza M. 2010. Investigation of spatial distribution pattern of bane species (Case study: Bayangan forest in Kermanshah province). Iran. For. J.2: 2. 177-185. (In Persian)
22.Shataee, Sh., and Darvish Sefat, A.A.S. 2007. Comparison of base object method and base pixel of satellite images in jungle type classification. J. Natur. Resour. Facul. 869: 13-881.(In Persian)
23.Shataee, Sh., Kalbi, S., and Fallah, A. 2012. Forest attributes imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms. Inter. J. Rem. Sens. 33: 19. 6254-6280.
24.St-Louis, V., Pidgeon, A.M., Radeloff, V.C., Hawbaker, T.J., and Clayton, M.K. 2006. High-resolution image texture asa predictor of bird species richness. Rem. Sens. Environ. 105: 299-312.
25.Walker, R.E., Stoms, D.M., Estes, J.E., and Cayocca, K.D. 1992. Relationships between biological diversity and multi-temporal vegetation index data in California. ASPRS ACSM held in Albuquerque, New Mexico. American Society for Photogrammetry and Remote Sensing, 15: 562-571.
26.Wolter, P.T., Townsend, P.A., and Sturtevant, B.R. 2009. Estimation of forest structural parameters using 5 and 10 mSPOT-5 satellite data. Rem. Sens. Environ. 113: 2019-2036.
27.Wood, E.M., Pidgeon, A.M., Radeloff, V.C., and Keuler, N.S. 2013. Image texture predicts avian density and species richness. PLOS ONE, 8: 5. 1-23.