Rheology of cellulose nanofibers in paper making: An overview

Document Type : Complete scientific research article

Author

Department of Cellulose Industries Engineering, College Natural Resources, Behbahan Alanbia University of Technology Khatam, Beginning of Deylam Road, Behbehan, Khuzestan

Abstract

Background and objectives: Today, the use of cellulosic nanofibers is widely researched for the production of various products, such as paper and paperboard. Cellulose nanofibers are made from pulp produced from various lignocellulosic sources in various methods. The quality of these materials can be evaluated in different ways. Meanwhile, the rheology indices of cellulosic nanofibers are one of the simplest and least costly methods to evaluate the quality of this material. In this paper, specifically, the relationship between indices of rheology of cellulosic nanofibers and their ability to improve paper and board strengths for papermaking are introduced.
Materials and methods: In this article, materials were categorized in terms of rheology sciences and cellulose nanofibers were specified among them. Then, important indices of rheology of cellulose nanofibers such as yield point, damping coefficient, storage modulus, loss modulus, and yield strain were introduced by presenting some of the results of measuring the rheological indices of cellulosic nanofibers. In the following, the relationship between rheological indices and strengthening ability of cellulose nanofibers to improve tensile and burst strengths of paper and paperboard production were investigated.
Results: The more storage modulus, as the most sensitive parameter in viscoelastic measurements compared to the loss modulus, the more viscoelastic ability and more elastic tendency. For cellulose nanofibers, if the ratio of the storage modulus is about 4 times greater than the loss modulus in the same concentrations, this indicates that the material is viscoelastic with considerable elasticity. If the amount of damping coefficient for cellulose nanoparticle gel is less than 0.3, this indicates that these gels are highly elastic with components in the nanometer scale and these characteristics indicate the presence of tangled cellulose nanofiber network and as a result, more strengthening feature is available for a variety of applications as strengthening paper and paperboard products. The critical strain on the behavior of the cellulosic nanofiber’s rheology appears almost independent of its dry matter content which implies the sustainability of the viscoelastic properties of these gels. The thick and dilute produced nanofiber gels have an exponential, with power 3, relationship with dry content (n ∝ G∅). The exponential, with power 3, relationship between the modulus and dry matter percentage is one of the criteria for the achievement of a gel of nanoscale cellulosic fibres.
Conclusion: In general, cellulose nanofibers gel is considered as a viscoelastic and thixotropic fluid and when used in paper and paperboard productions, the higher elastomeric index of it creates more strength properties of products. Therefore, in order to predict the achievement of nanosized fibres gel during production, a cheaper evaluation of the cellulosic rheology indices could be used instead of expensive images and even with the comparison of two types of cellulosic nanofibers, their rheological properties predict their performance for reinforcing paper and paperboard.

Keywords

Main Subjects


1.Bao, X., Lee, N.C., Raj, R.B., Rangan, K., and Maria, A. 1998. Engineering solder paste performance through controlled stress rheology analysis. Soldering & Surface Mount Technology. 10: 26-35.
2.Nissan, A.H., Higgins, H.G., and Lagani Jr, A. 1960. The significance of rheology in the making and using of paper. Transactions of the Society of Rheology. 4: 1. 207-232.
3.Bousfield, D.W. 2008. Rheological issues in the paper industry. Rheology Reviews. 6: 47-70.
4.Phanthong, P., Reubroycharoen, P.,Hao, X., Xu, G., Abudula, A. and
Guan, G. 2018. Nanocellulose: extraction and application. Carbon Resources Conversion. 1: 1. 32-43.
5.Klemm, D., Kramer, F., Moritz,S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition. 50: 5438-5466.
6.Saito, T., Nishiyama, Y., Putaux,J.L., Vignon, M., and Isogai, A.2006. Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules. 7: 1687-1691.
7.Sakurada, I., Nukushina, Y., and Ito, T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polymer Sci. Part A: Polymer Chemistry. 57: 651-660.
8.Liu, P., Borrell, P.F., Božič, M., Kokol, V., Oksman, K., and Mathew, A.P. 2015. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ And Fe3+ from industrial effluents. J. Hazard. Mater. 294: 177-185.
9.Dufresne, A. 2013. Nanocellulose: Anew ageless bionanomaterial. Materials Today. 16: 220-227.
10.Maiti, S., Jayaramudu, J., Das, K., Reddy, S.M., Sadiku, R., Ray, S.S., and Liu, D. 2013. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers. 98: 562-567.
11.Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., and Lee, P.S. 2014. Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Advanced Materials. 26: 2022-2027.
12.Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., and Bergström, L. 2015. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology. 10: 277-283.
13.Kim, J.H., Shim, B.S., Kim, H.S., Lee, Y.J., Min, S.K., Jang, D., Abas, Z., and Kim, J. 2015. Review of nanocellulose for sustainable future materials. Inter. J. Prec. Engin. Manufact. Green Technol. 2: 197-213.
14.Rezayati-Charani, P., Dehghani-Firouzabadi, M., Afra, E., Blademo,Å., Naderi, A., and Lindström, T.2013. Production of microfibrillated cellulose from unbleached kraft pulpof kenaf and scotch pine and itseffect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose. 20: 2559-2567.
15.Brodin, F.W., Gregersen, O.W., and Syverud, K. 2014. Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material-A Review. Nord. Pulp Pap. Res. J. 29: 156-166.
16.Choo, K., Ching, Y., and Chuah,C. 2017. Physiochemical and barrier properties of polyvinyl alcohol/ chitosan/ tempo-oxidized cellulose nanofibers composite films. J. Polymer Mater. 34: 223.
17.Rezayati-Charani, P., and Dehghani Firouzabadi, M. 2015. Comparison of produced film of cellulose nanofibers by dried and vacuum filtrated method from unbleached kraft pulp of kenaf bast fiber. J. For. Wood Prod. 62: 2. 317-328. (In Persian)
18.Mavelil-Sam, R., Deepa, B., Koshy, R.R., Mary, S.K., Pothan, L.A., and Thomas, S. 2017. Rheological properties of nanocomposites based on cellulose nanofibrils and cellulose nanocrystals. Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH verlag GmbH & Co. KGaA. USA. Pp: 481-521.
19.Toivonen, M.S., Kurki-Suonio, S., Wagermaier, W., Hynninen, V., Hietala, S., and Ikkala, O. 2017. Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules. 18: 1293-1301.
20.Aarstad, O., Heggset, E.B., Pedersen, I.S., Bjørnøy, S.H., Syverud, K., and Strand, B.L. 2017. Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers. 9: 378. 1-19.
21.Zhang, C., Zhai, T., and Turng,L.S. 2017. Aerogel microspheres based on cellulose nanofibrils as potentialcell culture scaffolds. Cellulose.24: 7. 2791-2799.
22.Virtanen, J., Pammo, A., Keskinen, J., Sarlin, E., and Tuukkanen, S. 2017. Pyrolysed cellulose nanofibrils and dandelion pappus in supercapacitor application. Cellulose. 24: 3387-3397.
23.Rezayati-Charani, P., Dehghani-Firouzabadi, M., Afra, E., and Shakeri, A. 2013. Rheological characterization of high concentrated mfc gel from kenaf unbleached pulp. Cellulose. 20: 727-740.
24.Chen, X., Zhang, Y., Cheng, L., and Wang, H. 2009. Rheology of concentrated cellulose solutions in1-butyl-3-methylimidazolium chloride. J. Polymer Environ. 17: 273-279.
25.Iotti, M., Gregersen, Ø.W., Moe, S.,and Lenes, M. 2011. Rheologicalstudies of microfibrillar cellulose water dispersions. J. Polymer Environ.19: 137-145.
26.Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., and Ikkala, O. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenizationfornanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934-1941.
27.Saarinen, T., Lille, M., and Seppälä, J. 2009. Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc. 17: 121-128.
28.Dimic-Misic, K., Maloney, T., and Gane, P. 2018. Effect of fibril length, aspect ratio and surface charge on ultralow shear-induced structuring in microand nanofibrillated cellulose aqueous suspensions. Cellulose. 25: 117-136.
29.Dimić-Mišić, K., Nieminen, K., Maloney, T., Sixta, H., and Paltakari,J. 2014. Processing plate-plate immobilization data of mnfc furnishes. J. Appl. Engin. Sci. 12: 145-152.
30.Fall, A., Bertrand, F., Ovarlez, G., and Bonn, D. 2009. Yield stress and shear banding in granular suspensions. Physical review letters. 103: 17.1-5.
31.Lasseuguette, E., Roux, D., and Nishiyama, Y. 2008. Rheological properties of microfibrillar suspension of tempo-oxidized pulp. Cellulose.15: 425-433.
32.Afsahi, G., Dimic-Misic, K., Gane, P., Budtova, T., Maloney, T., and Vuorinen, T. 2018. The Investigation of rheological and strength properties of nfc hydrogels and aerogels from hardwood pulp by short catalytic bleaching (H Cat). Cellulose. 25: 1637-1655.
33.Colson, J., Bauer, W., Mayr, M., Fischer, W., and Gindl-Altmutter, W. 2016. Morphology and rheology of cellulose nanofibrils derived from mixtures of pulp fibres and papermaking fines. Cellulose. 23: 2439-2448.
34.Li, M.C., Wu, Q., Song, K., Lee, S., Qing, Y., and Wu, Y. 2015. Cellulose nanoparticles: structure–morphology–rheology relationships. Acs Sustainable Chemistry & Engineering. 3: 821-832.
35.Gourlay, K., Van Der Zwan, T., Shourav, M., and Saddler, J. 2018. The potential of endoglucanases to rapidly and specifically enhance the rheological properties of micro/nanofibrillated cellulose. Cellulose. 25: 977-986.
36.Yue, D., and Qian, X. 2018. Isolation and rheological characterization of cellulose nanofibrils (CNFS) from coir fibers in comparison to wood and cotton. Polymers. 10: 3. 1-18.
37.Hubbe, M.A., Tayeb, P., Joyce, M., Tyagi, P., Kehoe, M., Dimic-Misic, K., and Pal, L. 2017. Rheology of nanocellulose-rich aqueous suspensions: a review. Bioresources. 12: 9556-9661.
38.Naderi, A., and Lindström, T.2015. Rheological measurements on nanofibrillated cellulose systems: a science in progress. Cellulose and cellulose Derivatives: Synthesis, modification and applications. New York. Pp: 187-202.
39.Nechyporchuk, O., Belgacem, M.N.,and Pignon, F.D.R. 2016. Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules. 17: 2311-2320.
40.Martoïa, F., Perge, C., Dumont, P., Orgéas, L., Fardin, M., Manneville, S., and Belgacem, M. 2015. Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter. 11: 4742-4755.
41.Mohtaschemi, M., Sorvari, A., Puisto, A., Nuopponen, M., Seppälä, J., and Alava, M.J. 2014. The vane method and kinetic modeling: shear rheology of nanofibrillated cellulose suspensions. Cellulose. 21: 3913-3925.
42.Benhamou, K., Dufresne, A., Magnin, A., Mortha, G., and Kaddami, H. 2014. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the tempo-mediated oxidation time. Carbohydrate Polymers. 99: 74-83.
43.Damani, R., Powell, R.L., and Hagen, N. 1993. Viscoelastic characterization of medium consistency pulp suspensions. Can. J. Chem. Engin. 71: 676-684.
44.Agoda-Tandjawa, G., Durand, S.,Berot, S., Blassel, C., Gaillard,C., Garnier, C., and Doublier, J.L.2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers. 80: 677-686.
45.Rudraraju, V.S., and Wyandt, C.M. 2005. Rheological Characterizationof microcrystalline cellulose/ sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: Part I. Inter. J. Pharm. 292: 53-61.
46.Derakhshandeh, B., Kerekes, R., Hatzikiriakos, S., and Bennington, C. 2011. Rheology of pulp fibre suspensions: a critical review. Chemical Engineering Science. 66: 3460-3470.
47.Swerin, A. 1998. Rheological properties of cellulosic fibre suspensions flocculated by cationic polyacrylamides. Colloids And Surfaces A: Physicochemical And Engineering Aspects. 133: 279-294.48.Lindström, S. 2008. Modelling and simulation of paper structure development. Doctorate thesis, Mid Sweden University, 64 p.
49.Lê, H.Q., Dimic-Misic, K., Johansson, L.S., Maloney, T., and Sixta, H. 2018. Effect of lignin on the morphology
and rheological properties of nanofibrillated cellulose producedfrom γ-valerolactone/water fractionation process. Cellulose. 25: 179-194.
50.Puisto, A., Illa, X., Mohtaschemi, M., and Alava, M. 2012. Modeling The rheology of nanocellulose suspensions. Nord. Pulp Paper Res. J. 27:2. 277-281.
51.Dimić-Mišić, K., Sanavane, Y., Paltakari, J., and Maloney, T. 2013. Small scale rheological observation of high consistency nanofibrillar material based furnishes. J. Appl. Engin. Sci.11: 145-151.
52.Ferrer, A., Salas, C., and Rojas, O.J. 2016. Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial crops and products. 84: 337-343.
53.Schenker, M., Schoelkopf, J., Gane,P., and  Mangin, P.J.C. 2019. Rheology of microfibrillated cellulose (MFC) suspensions: influence of the degreeof fibrillation and residual fibre content on flow and viscoelastic properties.26: 2. 845-60.
54.Hubbe, M.A., Tayeb, P., Joyce, M., Tyagi, P., Kehoe, M., Dimic-Misic,K., and Pal, L. 2017. Rheology of nanocellulose-rich aqueous suspensions: a review. Bioresources. 12: 4. 9556-661.
55.Nechyporchuk, O., Belgacem, M.N.,and Pignon, F. 2016. Current progressin rheology of cellulose nanofibrilsuspensions. Biomacromolecules. 17: 7. 2311-2320.
56.Osong, S.H., Norgren, S., and Engstrand, P. 2016. Processing ofwood-based microfibrillated cellulose andnanofibrillated cellulose and applications relating to papermaking: a review. Cellulose. 23: 93-123.
57.Subramanian, R., Hiltunen, E., and Gane, P.A. 2011. Potential use ofmicro-and nanofibrillatedcellulosecompositesexemplified by paper.P 121-152, In: , S. Kalia, B.S. Kaith and I. Kaur (eds), Cellulose Fibers:bio-and nano-polymer composites, Springer, Germany.
58.Vesterinen, A., and Seppälä, J. 2008. Rheological study of microfibrillar cellulose and dynamic mechanical analysis of paper sheet. Ann. Trans. Nord. Rheol. Soc. 16: 259-262.
59.Grüneberger, F., Künniger, T., Zimmermann, T., and Arnold, M.2014. Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose. 21: 1313-1326.
60.Lindström, T., Naderi, A., andWiberg, A. 2015. Large scale applications of nanocellulosic materials- a comprehensive review. J. Korea Technic. Assoc. Pulp Paper Indus.47: 6. 5-21.
61.Harris, J. 1977. Rheology and non-newtonian flow, Longman Publishing Group. Newyork, Pp: 28-33.62.Deshpande, A.P. 2010. Oscillatory shear rheology for probing nonlinear viscoelasticity of complex fluids: Large amplitude oscillatory shear. In rheology of complex fluids springer, New York, NY, Pp: 87-110.
63.Barrachina, E., Llop, J., Notari,M.D., Fraga, D., Martí, R., Calvet,I., Rey, A., Lyubenova, T.S., Kozhukharov, S.V., and Kozhukharov, V.S. 2015. Rheological effect of different deflocculation mechanisms on a porcelain ceramic composition. J. Chem. Technol. Metallur. 50: 4. 493-502.
64.Shafiei-Sabet, S., Martinez, M., and Olson, J. 2016. Shear rheology of micro-fibrillar cellulose aqueous suspensions. Cellulose. 23: 2943-2953.
65.Guenet, J.M. 2000. Structure versus rheological properties in fibrillar thermoreversible gels from polymers and biopolymers. J. Rheol. (1978-Present). 44: 947-960.
66.Petrovan, S., Collier, J., and Negulescu, I. 2001. Rheology of cellulosicn-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J. Appl. Polymer Sci. 79: 396-405.
67.Karppinen, A., Vesterinen, A.H., Saarinen, T., Pietikäinen, P., andSeppälä, J. 2011. Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose. 18: 1381-1390.
68.Haavisto, S., Liukkonen, J., Jäsberg, A., Koponen, A., Lille, M., and Salmela, J. 2011. Laboratory-scale pipe rheometry: a study of a microfibrillated cellulose suspension. Pp: 357-370, In: Proc. Papercon, TAPPI Press,1-4 May 2011, Northern Kentucky.
69.Garaita, M.G., and Kennedy, J.F. 2001. Chemical and physical networks, Formation and control of properties.Carbohydrate Polymers.44
. 2: 175-178.70.Gernaat, C.R. 2008. Correlation between rheological and mechanical properties in a low-temperature cure prepreg composite. Master of science thesis. Wichita State university, Kansas 106p.
71.Tanaka, R., Saito, T., Hondo, H., and Isogai, A. 2015. Influence of flexibility and dimensions of nanocelluloses
on the flow properties of theiraqueous dispersions. Biomacromolecules. 16: 7. 2127-2131.
72.Sarcheshmeh, T.G., Roudsari, A.F., and Tabei, A. 2013. Comparative study of chemical components and morphological features of trunk and cone fibers from loblolly pine grown in Gilan province. Iran. J. Wood Paper Sci. Res. 28: 3. 545-560. ( In persion)
73.Goodarzi, V., Jafari, S.H., Khonakdar, H.A., and Seyfi, J. 2011. Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J. Polymer Res. 18: 6. 1829-39.