1.Asadullah, M., Rahman, M.A., Ali, M.M., Rahman, M.S., Motin, M.A., Sultan, M.B., and
Alam, M.R. 2007. Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel., 86: 16.
2514-2520.
2.Bertero, M., De la Puente, G., and Sedran, U. 2012. Fuels from bio-oils: Bio-oil production
from different residual sources, characterization and thermal conditioning. Fuel. 95: 1. 263-
281.
3.Demirbas, A. 2004. Combustion Characteristics of different biomass fuels. Prog. Energy
Combust. Sci. 30: 2. 219-230.
4.Ebrahimi-Nik, M.A., Heidari, A., and Younesi, H. 2014. Bio-oil production from fast
pyrolysis of Corn residues and Eucalyptus wood in fluidized bed reactor. Journal of
Agricultural Machinery. 4: 2. 226-235.
5.Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., and Jones, J.M. 2008. The effect of
lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 87:
7. 1230−1240.
6.Garcia-Perez, M., Wang, S., Shen, J., Rhodes, M., Lee, W.J., and Li, C.Z. 2008. Effects of
Temperature on the Formatin of Lignin-Derived Oligomers during the Fast Pyrolysis of
Mallee Woody Biomass. Energy Fuels. 22: 3. 2022−2032.
7.Heidari, A., Stahl, R., Younesi, H., Rashidi, A., Troeger, N., and Ghoreyshi, A.S. 2014. Effect
of process conditions on product yield and composition of fast pyrolysis of Eucalyptus
grandis in fluidized bed reactor. Journal of Industrial and Engineering Chemistry. 20:
4.2594–2602.
8.Jain, R.K. 2001. Upgradation of quality of bagasse through advance de-pithing process.
Report of central pulp and paper research institute Saharanpur, 72p.
9.Jain, R.K., Dixit, A., Singh, K., Mathur, R.M., and Kulkarni, A.G. 2005. An Improved,
Environmentally Benign Process for Manufacturing of High Quality Chemical Bagasse Pulp.
Tappi Engineering, pulping and environmental conference, Philadelphia, USA.
10.Jones, S.B., Holladay, J.E., Valkenburg, C., Stevens, D.J., Walton, C., Kinchin, C., Elliott,
D.C., and Czernik, S. 2009. Production of gasoline and diesel from biomass via fast
pyrolysis, hydrotreating and hydorocracking: a design case. U.S. Department of Energy, 76p.
11.Jung, K.A., Woo, S.H., Lim, S.R., and Park, J.M. 2015. Pyrolytic production of phenolic
compounds from the lignin residues of bioethanol processes. Chemical Engineering Journal.
259: 1. 107-116.
12.Menon, V., and Rao, M. 2012. Trands in bioconversion of lignocellulose: Biofuels, platform
chemicals and Biorefinery concept. Prog. Energy Combust. Sci., 38: 4. 522−550.
13.Mohan, D., Rajput, S., Singh, V.K., Steele, P.H., and Pittman, C.U. 2011. Modeling and
evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
Journal of Hazardous Materials. 188: 1-3. 319-333.
14.Montoya, J.I., Valdés, C., Chejne, F., Gómez, C.A., Blanco, A., Marrugo, G., Osorio, J.,
Castill, E., Aristóbulo, J., and Acero, J. 2015. Bio-oil production from Colombian bagasse by
fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied
Pyrolysis. 112: 2. 379-387.
15.Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., and Hicks, K.B.
2010. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass
and Bioenergy. 34: 1. 67-74.
16.Oasmaa, A., and Peacocke, C. 2010. Properties and Fuel use of biomass derived fast
pyrolysis liquids. A guide; VTT Publications: Espoo, Finland, Publ. no. 731.
17.Pereira, P.H.F., Voordward, H.C.J., Cioffi, M.O.H., Mulinari, D.R., Luz, S.M.D., and Da
Silva, M.L.C. 2011. Sugarcane bagasse pulping and bleaching: thermal and chemical
characterization. BioResource., 6: 3. 2471-2482.
18.Qureshi, N., Hodge, and D., and Vertes , A. 2014. Biorefineries: Integrated Biochemical
Processes for Liquid Biofuels. Elsevier, 296p.
19.Rasooly Garmaroody, E., Rashidavi, J., Ramezani, O., and Saraeean, A.R. 2016. Effect of
Depithing on Bagasse pulp and paper properties. J. of Wood and Forest Science and
Technology. 22: 4. 167-185.
20.Rodrigues, J.A.R. 2011. From the Mill to a Biorefinery: The Sugar Factory as an Industrial
Enterprise for the Generation of Biochemicals and Biofuels. Química Nova. 34: 7. 1242-
1254.
21.Uzun, B.B., Apaydin-Varol, E., Ateş, F., Özbay, N., and Pütün, A.E. 2010. Synthetic fuel
production from tea waste: Characterisation of bio-oil and bio-char. Fuel. 89: 1. 176-184.
22.Westerhof, R.J., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A. 2010. Effect of
Temperature in Fluidized Bed Pyrolysis of Biomass: Oil Quality Assessment in Test Units.
Ind. Eng. Chem. Res. 49: 3. 1160−1168.
23.Wise, L.E., Murphy, M., and Adieco, D.A. 1946. Chlorite holocellulose, its fractionation and
bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal
122: 1. 35–43.
24.Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., and Zhong, Z. 2011. Biomass
fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
Bioresource Technology., 102: 5. 4258-4264.
25.Zheng, A., Chen, T., Sun, J., Jiang, L., Zhao, Z., Huang, Z., Zhao, K., Wei, G., He, F., and
Li, H. 2017. Toward Fast Pyrolysis-Based Biorefinery: Selective Production of Platform
Chemicals from Biomass by Organosolv Fractionation Coupled with Fast Pyrolysis. ACS
Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.7b00622.