1.Albu, M.G., Vuluga, Z., Panaitescu, D.M., Vuluga, D.M., Căşărică, A., and Ghiurea, M. 2014.
Morphology and thermal stability of bacterial cellulose/ collagen composites. Central
European Journal of Chemistry 12(9): 968–975. Cent. Eur. J. Chem.
2.Ashori, A., Sheykhnazari, S., Tabarsa, T., Shakeri, A., and Golalipour, M. 2012. Bacterial
cellulose/ silica nanocomposites: Preparation and characterization. Carbohydrate Polymers
90(1): 413–418.
3.Basta, A.H., and El-Saied, H. 2009. Performance of improved bacterial cellulose appli-cation
in the production of functional paper. Applied Microbiology, 107(6): 2098–2107.
4.Bielecki, S., Krystynowiz, A., Czaja, W., and Brown, M. 2006. Microbial cellulose-the natural
power to heal wounds. J. Biomaterials. 27(2): 145-151.
5.Bras, D., Stromme, M., and Mihranyan, A. 2015. Characterization of diellectric propertiesof
nanocellulose from wood and algae for electrical insulator applications. Phys. chem. B. 119:
5911-917.
6.Cakar, F., Kati, A., Ozer, I., Dilan Demir Bag, D., Sahin, F., and Aytekin, A.O. 2014. Newly
developed medium and strategy for bacterial cellulose production. Bio Chemical
Engineering Journal. 92: 35-40.
7.Fang, L., and Catchmark, J.M. 2014. Characterization of water-soluble exopolysaccharides
from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and
ribbon assembly. Cellulose .21: 3965–3978.
8.Gabr, M.H., Elrahman, M.A., Okubo, K., and Fujii, T. 2010. A study on mechanical
properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with
liquid rubber. Composites part A. 41: 1263-1271.
9.Jeon, S., Yoo, Y.M., Park, J.W., Kim, H.J., and Hyun, J. 2014. Electrical conductivity and
optical transparency of bacterial cellulose based composite by static and agitated methods.
Current Applied Physics. 14: 1621–1624.
10.Juntaro, J., Ummartyotin, S., Sain, M., and Manuspiya, H. 2012. Bacterial cellulose
reinforced polyurethane-based resin nano composites: A study of how ethanol and
processing pressure affect physical, mechanical and dielectric properties. Carbohydrate
polymers. 87: 2464-2469.
11.Mohite, B.V., and Patil, S.V. 2014. Physical, structural, mechanical and thermal
characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers.
106: 132–141.
12.Nakagaito, A.N., Iwamoto, S., and Yano, H. 2005. Bacterial cellulose: The ultimate nano –
scalar cellulose morphology for the production of high-strength composites. Materials
science and processing. 80: 93-97.
13.Nogi, M., and Yano, H. 2008. Transparent nano composites based on cellulose produced by
bacteria offer potential Innovation in the electronics device industry. Advanced material. 20:
1849-1852.
14.Poletto, M.P., Zattera, A.J., and Santana, R.M.C. 2012. Structural differences between wood
species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric
analysis. Appl. Polym. Sci., 126: E336–E343.
15.Rezaee, A., Solimani, S., and Forozandemogadam, M. 2005. Role of plasmid in production
of Acetobacter xylinum biofilms. Biochemistry and Biotechnology. 1(3): 121-125.
16.Santos, S.M., Carbajo, J.M., Gómez, N., Quintana, E., Ladero, M., Sánchez, A., Chinga-
Carrasco, G., and Villar, J.C. 2016. Use of bacterial cellulose in degraded paper restoration.
Part II: application on real sample. Materials Science, 51: 1553–1561.
17.Sheykhnazari, S., Tabarsa, T., Ashori, A., and Ghanbari, A. 2016. Bacterial cellulose
composites loaded with SiO2 nanoparticles: Dynamic-mechanical and thermal properties.
International Journal of Biological Macromolecules, 93: 672–677.
18.Sheykhnazari, S., Tabarsa, T., Ashori, A.R., Shakeri, A.R., and Golalipour, M. 2011.
Bacterial synthesized cellulose nanofibers; Effects of growth times and culture medium on
the structural characteristics. Carbohydrate polymers. 86: 1187-1191.
19.Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., and Stahl, K. 2005. On the
determination of crystallinity and cellulose content in plant fibres. Cellulose. 12: 563-576.
20.Trovatti, E., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., and Pascoal Neto, C. 2010. Novel
bacterial cellulose-acrylic resin nanocomposites. Composites Science and Technology. 70:
1148-1153.
21.Ul-Islam, M., Khan, T., and Park, J.K. 2012. Nanoreinforced bacterial cellulosemontmorllonite
composites for biomedical applications.Carbohydrate polymers. 89: 1189-
1197.
22.Ummartyotin, S., Juntaro, J., Sain, M., and Manuspiya, H. 2012. Development of transparent
bacterial cellulose nano composites films as substrate for flexible organic light emitting
diode (OLED) display. Industrial crops and products. 35: 92-97.
23.Wada, M., Okano, T. 2001. Localization of Iα and Iβ phases in algal cellulose revealed by
acid treatments. Cellulose 8: 183–188.