1.Azubuike, C.P., Odulaja, J.O., and Okhamafe, A.O. 2012. Physicotechnical, spectroscopic and
thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived
from groundnut shells. Journal of Excipients and Food Chemicals, 3(3): 106-115.
2.Duchemin, B., Newman, R., and Staiger, M.P. 2007. Phase characterisation of all-cellulose
composites. The 16th Internationnal Microscopy Conference on composite materials (ICCM),
Jul 8-13, Kyoto, Japan. 6p.
3.Foner, H.A., and Adan, N. 1983. The characterization of papers by X-Ray diffraction (XRD):
measurement of cellulose crystallinity and determination of mineral composition. Journal of
the Forensic Science Society, 23(4): 313–321.
4.Gindl, W., and Keckes, J. 2005. All-cellulose nanocomposite. Polymer, 46(23): 10221–10225.
5.Gontard, N., Duchez, C., Cuq, B., and Guilbert, S. 1994. Edible composite films of wheat
gluten and lipids: water vapour permeability and other physical properties. Journal of Food
Science and Technology, 29(1): 39-50.
6.Gumuskaya, E., Usta, M., and kirci, H. 2003. The effects of various pulping conditions on
crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability, 81(3):
559-564.
7.Innerlohinger, J., Weber, H.K., and Kraft, G. 2006. Aerocellulose: aerogels and aerogel-like
materials made from cellulose. Macromolecular Symposia, 244(1): 126-135.
8.Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorri, A.
2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie
International Edition, 50(24): 5438– 5466.
9.Krassig H.A. 1993. Cellulose: structure, accessibility, and reactivity. Gordon and Breach
Science, Switzerland, 240p.
10.Lin, Y.C., Cho, J., Tompsett, G.A., Westmoreland, P.R., and Huber, G.W. 2009. Kinetics
and mechanism of cellulose pyrolysis. The Journal of Physical Chemistry C, 113(46):
20097-20107.
11.Nishino, T., Matsuda, I., and Hirao K. 2004. All-cellulose composite. Macromolecules,
37(20): 7683-7687.
12.Saafan, A.A., and Habib, A.M. 1987. Influence of changes in fine structure on thermal
properties of cotton fiber. Journal of thermal analysis. Calorimetry, 32(5): 1345–1354.
13.Shakeri, A., and P.Staiger, M. 2010. Phase transformations in regenerated microcrystalline
cellulose following dissolution by an ionic liquid. Bioresources, 5(2): 979-989.
14.Siro, I., and Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a
review. Cellulose, 17(3): 459–494.
15.Troedec, M., Sedan, D., Peyratout, C., Bonnet, J., Smith, A., Guinebretiere, R., Gloaguen,
V., and Krausz, P. 2008. Influence of various chemical treatments on the composition and
structure of hemp fibers. Composite. Part A. 39(3): 514-522.
16.Wang, B., Sain, M., and Oksman, K. 2007. Study of structural morphology of hemp fiber
from the micro to the nanoscale, Applied Composite Materials. 14(2): 89-103.
17.Yousefi, H., Nishino, T., Faezipour, M., Ebrahimi, G., Shakeri, A., and morimune, S. 2010.
All-cellulose nanocomposite made from nanofibrillated cellulose. Advanced Composites
letters. 19(6): 190-195.
18.Yousefi, H., Faezipour, M., Nishino, T., Shakeri, A., and Ebrahimi, G. 2011a. All-cellulose
composite and nanocomposite made from partially dissolved micro- and nanofibers of canola
straw. Polymer Journal, 43(1): 559-564.
19.Yousefi, H., Nishino, T., Faezipour, M., Ebrahimi, G., and Shakeri, A. 2011b. Direct
fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquidbased
nanowelding. Biomacromolecules, 12(11): 4080−4085.
20.Zohuriaan-mehr, M.J. 2007. Celloluse and its derivatives. Iran polymer society Press,
Tehran, 60p. (In Persian)