ارزیابی و مدل سازی خطرآفرینی درختان چنار با استفاده از معیارهای تشخیص خطرآفرینی و آنالیز مولفه‌ اصلی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد جنگلداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، ایران،

2 استادیار گروه علوم جنگل، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد و آزمایشگاه مرکزی، دانشگاه شهرکرد، ایران،

3 استادیار گروه مرتع و آبخیرداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد و آزمایشگاه مرکزی، دانشگاه شهرکرد، ایران،

4 دانشیار گروه علوم جنگل، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، ایران

چکیده

سابقه و هدف: درختان خیابانی با وجود تمام سودمندی‌هایی که می‌توانند داشته باشد هر گونه عیب و نقص به دلیل فرتوتی درخت، کاهش مقاومت درخت به خاطر صنعتی بودن، پرجمعیت بودن و آلودگی آب و هوای شهرهای بزرگ و همچنین خشکسالی‎‌های مکرر ممکن است به بروز خطرهای مالی و جانی منجر شود. بنابراین ضرورت بررسی و شناسایی درختان خطر آفرین فضای سبز شهرهای بزرگ را افزایش داده است. برای این منظور ارزیابی مقدار خطرآفرینی درختان چنار (Plantanus orientalis L.) فضای سبز خیابان عباس آباد شهر اصفهان و مدل پیش‌بینی خطر سقوط این درختان با استفاده از شبکه عصبی در سال 1397 پرداخته شد.
مواد و روش‌ها: در پژوهش حاضر شدت خطرآفرینی درختان چنار در خیابان عباس آباد شهر اصفهان با روش آماربرداری صددرصد با استفاده از متغیرهای کمی و معیارهای تشخیص خطرآفرینی (کیفی یا عیوب) مورد مطالعه قرار گرفت. پس از تعیین سهم معیارهای خطرآفرین و درجه اهمیت آن‌ها در 711 اصله درخت چنار، آنالیز تجزیه واریانس یک طرفه بین تعداد درختان در معیارهای مختلف خطرآفرینی صورت گرفت. در مرحله بعد، درختان از نظر معیارهای خطرآفرینی وزن‌دهی شدند. سپس بر مبنای اعداد حاصل از وزن‌دهی بر اساس طبقه‌بندی تجربی به 5 طبقه‌ی خطرآفرین تقسیم شدند. همچنین به منظور پردازش داده‌های متغیرهای کمی، معیارهای تشخیص خطرآفرینی (کیفی یا عیوب) و پارامترهای وزن‌دهی و طبقه‌های شدت خطرآفرینی از تجزیه و تحلیل مولفه‌های اصلی و شبکه پرسپترون چند لایه‌ی شبکه عصبی استفاده شد.
یافته‌ها: با توجه به نتایج معیار تشخیص خطرآفرینی درختان چنار، متغیرهای وضعیت و ضعف ساختاری یا ضعف فیزیکی یا انحراف از راستای قائم (61%)، مشکلات ریشه (59%) و زخم روی تنه و ریشه (55%) بیشترین سهم را دربر می‌گیرند. همچنین نتایج حاصل از آزمون تجزیه واریانس یک طرفه معیارهای تشخیصی خطرآفرینی درختان چنار نشان داد که تعداد درختان بین 4 طبقه فاقد خطر یا سالم، خطر کم، خطر متوسط و خطر زیاد در سطح خطای یک درصد دارای اختلاف معنی‌دار هستند. نتایج مقایسه میانگین آزمون دانکن نشان داد که طبقه خطر متوسط با طبقات خطر کم و خطر زیاد فاقد اختلاف معنی‌دار هستند و سایر طبقات با یکدیگر دارای اختلاف معنی‌دار هستند. نتایج حاصل از آنالیز مولفه‌ اصلی نشان دهنده این است که محور اول و دوم 40/41 درصد از تغییرات کل را در برمی‌گیرند. پارامترهای وزن‌دهی با زخم روی تنه و ریشه، تماس با خطوط و مشکلات ریشه نسبت به سایر متغیرهای کمی و کیفی همبستگی بالا و مثبت را نشان دادند. به طور کلی دو متغیر مشکلات ریشه و زخم روی تنه و ریشه از مهمترین متغیرهای موثر در تعیین شدت خطرآفرینی درختان چنار در منطقه مورد مطالعه در دو روش معیارهای تشخیصی خطرآفرینی و تجزیه و تحلیل مولفه‌ اصلی هستند. دقت و برازندگی شبکه عصبی با توجه به ضرایب تبیین بالای داده‌های آموزشی، اعتبارسنجی، ارزیابی و در نهایت تمامی داده‌های شبکه عصبی (927/0، 930/0، 930/0 و 927/0) و حداقل میانگین مربعات خطا (داده‌های آموزشی=186/0، ارزیابی=196/0 و اعتبارسنجی=169/0) در پیش‌بینی طبقات شدت خطرآفرینی درختان چنار خیابان عباس آباد از سطح بسیار مطلوبی برخوردار است و همچنین منطبق بودن خروجی شبکه عصبی و داده‌های واقعی برهم دال بر کیفیت مناسب شبکه است.
نتیجه‌گیری: مشکلات ریشه و زخم بیشترین سهم را در خطر آفرینی درختان چنار دارند و براساس طبقه‌بندی درختان در حال حاضر، در طبقه‌های خطر بسیار کم و کم قرار داشته ولی در آینده قابلیت تبدیل شدن به درختان خطرناک را دارند. بنابراین در مجموع اقدامات پیشگیرانه و اصلاحی برای درختان با خطر کم و متوسط پیشنهاد می‌شود. با توجه به کارایی مطلوب شبکه عصبی در طبقه‌بندی شدت ریسک درختان چنار خطرآفرین در فضای سبز شهری به عنوان یک مدل پیش‌بینی در ارزیابی احتمال سقوط درختان چنار معرفی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment and Modeling of risk possibility of Plane tree (Platanus orientalis L.) using Principle Component Analysis

نویسندگان [English]

  • Mozdeh Nafian 1
  • Mohsen Bahmani 2
  • Elham Ghehsareh 3
  • Ali Soltani 4
1 M.Sc. Student in Forestry, Faculty of Natural Resources and Earth Sciences, University of Shahrekord, Shahrekord, Iran,
3 Assistant Prof., Dept., of Natural Resources and Earth Sciences, Faculty of rangeland and watershed, University of Shahrekord, Shahrekord, Iran,
4 Associate Prof., Dept., of Natural Resources and Earth Sciences, Faculty of Forest Science, University of Shahrekord, Shahrekord, Iran,
چکیده [English]

Background and Objectives: Street trees in urban green space, despite all the benefits, any defect due to old tree age, loss of tree resistance because of the industrialization, population density and pollution of the big cities, as well as repeated droughts, can lead to the risk of personal injury or damage to property. Therefore, the importance of exploring and identifying hazardous trees has increased the in the large cities. For this propose, the estimation of the risk possibility of plane trees (Plantanus orientalis L.) in the green space of Abbasabad-Abad in Isfahan and their fall risk model prediction was done using Artificial Neural Network.
Material and Methods: Isfahan was studied, using data coming from a full survey method, and using quantitative tree body proportions and few risk factors (qualitative or imperfect properties). Following coining the share of each of the hazard criteria and their ratio importance indices One-way ONOVA test compared of the number of trees in different risk levels. Then, all the trees scored via the biased levels of their risk levels. Accordingly, based on the weighted scores, they were divided into five hazardous categories according. To develop an understanding of the quantitative variables, risk factors, the weight parameters and hazard classes, we carried out a principle component analysis (PCA) and a multi-layer perceptron (MLP) network procedure.
Results: The results from the proportion of each hazard index reviled the importance of the the importance of the structural tree weakness (61%), root problems (59%), and trunk and root wounds (55%). Also, results of One-way ONOVA test, showed the risk levels of the planted trees can be significantly classified into four classes of: with no risk or healthy, low, moderate and high risk classes, at one percent error level. The results of Duncan's mean test showed that the number of trees in no risk and low risk classes were significantly higher than the other classes at one percent error level. The results from the PCA indicated that the first and second components explained 41.40 percent of the total variation. The risk and weighting parameters of the wound on the trunk and root, contact power lines, root problems were highly and positively correlated. In general, the two variables of the root problems trunk as well as root wounding were among the most important variables in term of risk assessment of the plane trees. The high coefficient of determination values of training, validation, verification and finally all neural network data (0.927, 0.930, 0.930, and 0.927) and the least mean square error values (training data = 0.186, verification 0.196 and validation = 0.169) indicated, the accuracy desirability of the artificial neural network in the prediction of the risk classes of street side trees.
Conclusion: Root and wound problems have the greatest portion in the risk of Platanus orientalis L. and, based on the classification of trees, are currently in low and very low risk, but they are capable of becoming dangerous trees in the future. In general preventive and corrective measures are proposed for low and intermediate risk trees. Regarding the optimal performance of the Neural Network for the classification of the hazardous Platanus orientalis L. trees in the urban green space, it is introduced as a prediction model in evaluating the probability of fallen trees.

کلیدواژه‌ها [English]

  • Abbas-Abad Avenue
  • Tree risk assessment index
  • principle component analysis
  • multilayer perceptron network
1.Aghajani, H., Marvi Mohadjer, M.R., Jahani, A., Asef, M.R., Shirvany, A., and Azaryan, M. 2014. Investigation of affective habitat factors affecting on abundance of wood macrofungi and sensitivity analysis using the artificial neural network (Case study: Kheyroud forest, Noshahr), Iran. J. For. Pop. Res. 21: 4. 617-628. (In Persian)
2.Alamdari, A.A., Dosti Aref, A., Karimi Mahabadi, R., and Rajabi, Z. 2011. Special topics in electrical and computer engineering with Matlab. Negarandeh Danesh Press., Tehran, 624p. (In Persian)
3.Albers, J., and Hayes, E. 1993. How to detect, assess and correct hazard trees in recreational areas. Department of Natural Resources Press, Minnesota DNR, USA, 69p.
4.Banj Shafiei, A., Samadzadeh Gargari, Kh., Seyedi, N., and Alijanpour, A. 2016. Study of qualitative, quantitative and risk possibility of Plane trees of Urmia. Forest Research and Development. 1: 4. 319-335. (In Persian)
5.Duryea, M.L., Kampf, E., and Littell, R.C. 2007. Hurricanes and the urban forest: I. Effects on southeastern United States coastal plain tree species. Arboricult. Urban For. 33: 83-97.
6.Eshaghi Rad, J., Pakgohar, N.,Banj Shafei, A., and Alavi, J. 2016. Comparison of indirect ordination methods for analysis of the vegetation (Case study: Urmia airport plantation). Iran. J. For. Pop. Res. 23: 4. 637-646.(In Persian)
7.Ghehsareh Ardestani, E., Bassiri, M., Tarkesh, M., and Borhani, M. 2010. Distributions of Species Diversity Abundance Models and Relationship between Ecological Factors with Hill (N1) Species Diversity Index in 4 Range Sites of Isfahan Province. J. RangeWater. Manage. Iran. J. Natur. Resour. 63: 3. 387-397. (In Persian)
8.Heikkonen, J., and Varjo, J. 2004.Forest change detection applying Landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions. Forest Science. 50: 5. 579-588.
9.Hosseinzadeh, J., Najafifar, A., and Tahmasebi, M. 2015. Investigation on principal factors determining stand structure in Oak forests of Zagross. J. Plant Res. (Iran. J. Biol.). 29: 4. 766-774. (In Persian)
10.Jahani, A. 2017a. Aesthetic quality evaluation modeling of forest landscape using artificial neural network. J. Wood For. Sci. Technol. 24: 3. 17-33.(In Persian)
11.Jahani, A. 2017b. Sycamore Failure Hazard Risk modeling in urban green space. Jsaeh. 3: 4. 35-48. (In Persian)
12.Jahani, A., and Mohammadi Fazel, A. 2015. Aesthetic quality modeling of landscape in urban green space using artificial neural network. J. Natur. Environ. (Iran. J. Natur. Resour.).69: 4. 951-963. (In Persian)
13.Jim, C.Y., and Zhang, H. 2013. Defect-disorder and risk assessment of heritage trees in urban Hong Kong. Urban Forestry and Urban Greening. 12: 585-596.
14.Kazemi Najafi, S. 2016. Nondestructive evaluation of standing trees. First Printing, Tarbiat Modarres University Publication Center, Tarbiat Modares University Press. Tehran, 436p. (In Persian)
15.Kord, B., Adelli, E., and Lashaki, A.K. 2007. Study of quality and quantity afforested species in Pardisan ECO-Park (Tehran city). J. Agric. Sci. 13: 1. 75-84. (In Persian)
16.Matheny, N., and Clark, J. 2009. Tree risk assessment: what we know (and what we Don’t know). Arborist New. 18: 1. 28-33. 
17.Mortimer, M.J., and Kane, B. 2004. Hazard tree liability in the United States: uncertain risks for owners and professionals. Urban Forestry and Urban Greening. 2: 3. 159-165.
18.Parsamahr, A.H., and Khosravani, Z. 2017. Determining drought severity using multi- criteria decision- making based on TOPSIS method (Case study: selective stations of Isfahan Province). Iran. J. Range Des. Res. 24: 1. 16-29.(In Persian)
19.Pourhashemi, M., Khosro Pour, A., and Heidari, M. 2012. The assessment of hazardous oriental plane (Platanus orientalis Linn.) trees in Valiasr street of Tehran. Iran. J. For. 4: 3. 265-275.(In Persian)
20.Pourmajidian, M.R., Aghajani, H., Fallah, A., and Heydari, M. 2015. An investigation of dangers rate of Pine (Pinus eldarica Medw) trees in urban margins in Babol city. J. Natur. Ecosyst. Iran. 5: 4. 63-76. (In Persian)
21.Ravi Raja, A. 2016. Principal component analysis based assessment of trees outside forests in satellite images. Ind. J. Sci. Technol. 9: S1. 1-6.
22.Shahgholi, Gh., Ghafouri Chiyaneh, H., and Mesri Gundoshmian, T. 2017. Modeling of soil compaction beneath the tire using multilayer perceptron neural networks. J. Agric. Machin.8: 1. 105-118. (In Persian)
23.Sheikholslami, A.R., Bagheri Khalili, F., and Mahmod Abadi, A., 2012. Application of principal component analysis as a variables reduction technique in freeway accident prediction models (a case study). J. Transport. Engin. 3: 4. 325-338. (In Persian)
24.Smiley, E.T., Fraedrich, B.R., and Fengler, P. 2007. Hazard tree inspection, evaluation, and management. Urban and Community Forestry in the Northeast, Pp: 277-294.
25.Tahmasebi, P. 2011. Ordination multivariate analysis of ecological data. Shahrekord University Press. Iran, 181p.
26.Terho, M., and Hallaksela, A.M. 2005. Potential hazard characteristics of Tilia, Betula, and Acer trees removed in the Helsinki City Area during 2001-2003. Urban Forestry and Urban Greening.
327.Zobeiry, M. 2012. Forest inventory measurement of tree and forest. 5 edith, Tehran University Press. Iran, 402p.